Bringing Topology-Based Flow Visualization to the Application Domain

The visualization community is currently witnessing strong advances in topology-based flow visualization research. Numerous algorithms have been pro posed since the introduction of this class of approaches in 1989. Yet despite the many advances in the field, topology-based flow visualization methods have, until now, failed to penetrate industry. Application domain experts are still, in general, not using topological analysis and visualization in daily practice. We present a range of state-of-the art topology-based flow visualization methods such as vortex core line extraction, singularity and separatrix extraction, and periodic orbit extraction techniques, and apply them to real-world data sets. Applications include the visual ization of engine simulation data such as in-cylinder flow, cooling jacket flow, as well as flow around a spinning missile. The novel application of periodic orbit extraction to the boundary surface of a cooling jacket is presented. Based on our experiences, we then describe what we believe needs to be done in order to bring topological flow visualization methods to industry-level software applications. We believe this discussion will inspire useful directions for future work.

[1]  Hans-Peter Seidel,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization (2006) Path Line Oriented Topology for Periodic 2d Time-dependent Vector Fields , 2022 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Gerik Scheuermann,et al.  Visualizing Nonlinear Vector Field Topology , 1998, IEEE Trans. Vis. Comput. Graph..

[4]  Konstantin Mischaikow,et al.  Vector Field Editing and Periodic Orbit Extraction Using Morse Decomposition , 2007, IEEE Transactions on Visualization and Computer Graphics.

[5]  Jarke J. van Wijk,et al.  The value of visualization , 2005, VIS 05. IEEE Visualization, 2005..

[6]  Bob Laramee,et al.  Advanced Visualization of Engine Simulation Data Using Texture Synthesis and Topological Analysis , 2007 .

[7]  David L. Marcum,et al.  Numerical Simulation of a Spinning Missile with Dithering Canards Using Unstructured Grids , 2004 .

[8]  Ronald Peikert,et al.  A higher-order method for finding vortex core lines , 1998 .

[9]  Suresh K. Lodha,et al.  Topology preserving compression of 2D vector fields , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[10]  S. Parthasarathy,et al.  Chapter 3 Mining Temporally-Varying Phenomena in Scientific Datasets , 2004 .

[11]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[12]  Bob Laramee Effective Visualization of Heat Transfer , 2006 .

[13]  Robert van Liere,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999, VisSym.

[14]  Lambertus Hesselink,et al.  Surface representations of two- and three-dimensional fluid flow topology , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[15]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[16]  Hans-Peter Seidel,et al.  Grid-independent Detection of Closed Stream Lines in 2D Vector Fields , 2004, VMV.

[17]  Robert S. Laramee,et al.  The State of the Art , 2015 .

[18]  Hans Hagen,et al.  Tracking Closed Streamlines in Time Dependent Planar Flows , 2001, VMV.

[19]  Raghu Machiraju,et al.  Vortex Visualization for Practical Engineering Applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[20]  Hans Hagen,et al.  Topology-Based Visualization of Time-Dependent 2D Vector Fields , 2001, VisSym.

[21]  Chris Henze,et al.  Feature Extraction of Separation and Attachment Lines , 1999, IEEE Trans. Vis. Comput. Graph..

[22]  Hans Hagen,et al.  Visualization of higher order singularities in vector fields , 1997 .

[23]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[24]  Bob Laramee Stream Surfaces and Texture Advection: A Hybrid Metaphor for Visualization of CFD Simulation Results , 2006 .

[25]  Xavier Tricoche,et al.  Surface techniques for vortex visualization , 2004, VISSYM'04.

[26]  Robert S. Laramee,et al.  ISA and IBFVS: image space-based visualization of flow on surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[27]  Frits H. Post,et al.  Vortex Tracking and Visualisation in a Flow Past a Tapered Cylinder , 2002, Comput. Graph. Forum.

[28]  David N. Kenwright,et al.  Automatic detection of open and closed separation and attachment lines , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[29]  Ronald Peikert,et al.  The "Parallel Vectors" operator-a vector field visualization primitive , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[30]  Robert S. Laramee,et al.  Visual interference with a transparent head mounted display , 2001, CHI Extended Abstracts.

[31]  Robert van Liere,et al.  Multi-level topology for flow visualization , 2000, Comput. Graph..

[32]  David C. Banks,et al.  A Predictor-Corrector Technique for Visualizing Unsteady Flow , 1995, IEEE Trans. Vis. Comput. Graph..

[33]  Hans Hagen,et al.  Visualization of higher order singularities in vector fields , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[34]  Robert van Liere,et al.  Collapsing flow topology using area metrics , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[35]  Frits H. Post,et al.  Detection, quantification, and tracking of vortices using streamline geometry , 2000, Comput. Graph..

[36]  Lambertus Hesselink,et al.  Representation and display of vector field topology in fluid flow data sets , 1989, Computer.

[37]  Konstantin Mischaikow,et al.  Vector field design on surfaces , 2006, TOGS.

[38]  Xavier Tricoche,et al.  Fast and Robust Extraction of Separation Line Features , 2006 .

[39]  Robert Haimes,et al.  Automatic Vortex Core Detection , 1998, IEEE Computer Graphics and Applications.

[40]  Bob Laramee,et al.  Interactive 3D Flow Visualization Based on Textures and Geometric Primitives , 2005 .

[41]  D. Sujudi,et al.  Identification of Swirling Flow in 3-D Vector Fields , 1995 .

[42]  D. Weiskopf,et al.  Investigating swirl and tumble flow with a comparison of visualization techniques , 2004, IEEE Visualization 2004.

[43]  Hans Hagen,et al.  Extraction and Visualization of Swirl and Tumble Motion from Engine Simulation Data , 2007, Topology-based Methods in Visualization.

[44]  David Kenwright Automatic detection of open and closed separation and attachment lines , 1998 .

[45]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[46]  R. Haimes,et al.  On the velocity gradient tensor and fluid feature extraction , 1999 .

[47]  D. Thompson,et al.  Eduction of swirling structure using the velocity gradient tensor , 1991 .

[48]  Raghu Machiraju,et al.  Geometric verification of swirling features in flow fields , 2002, IEEE Visualization, 2002. VIS 2002..

[49]  Chris R. Johnson Top Scientific Visualization Research Problems , 2004, IEEE Computer Graphics and Applications.

[50]  W. D. Leeuw,et al.  Visualization of Global Flow Structures Using Multiple Levels of Topology , 1999 .

[51]  Gerik Scheuermann,et al.  Detection and Visualization of Closed Streamlines in Planar Flows , 2001, IEEE Trans. Vis. Comput. Graph..

[52]  David C. Banks,et al.  Vortex tubes in turbulent flows: identification, representation, reconstruction , 1994, Proceedings Visualization '94.

[53]  D. Degani,et al.  Graphical visualization of vortical flows by means of helicity , 1990 .