Submodular function maximization via the multilinear relaxation and contention resolution schemes

We consider the problem of maximizing a non-negative submodular set function f:2N -> RR+ over a ground set N subject to a variety of packing type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that allows us to derive a number of new results, in particular when f may be a non-monotone function. Our algorithms are based on (approximately) solving the multilinear extension F of f [5] over a polytope P that represents the constraints, and then effectively rounding the fractional solution. Although this approach has been used quite successfully in some settings [6, 22, 24, 13, 3], it has been limited in some important ways. We overcome these limitations as follows. First, we give constant factor approximation algorithms to maximize F over an arbitrary down-closed polytope P that has an efficient separation oracle. Previously this was known only for monotone functions [36]. For non-monotone functions, a constant factor was known only when the polytope was either the intersection of a fixed number of knapsack constraints [24] or a matroid polytope [37,30]. Second, we show that contention resolution schemes are an effective way to round a fractional solution, even when f is non-monotone. In particular, contention resolution schemes for different polytopes can be combined to handle the intersection of different constraints. Via LP duality we show that a contention resolution scheme for a constraint is related to the correlation gap [1] of weighted rank functions of the constraint. This leads to an optimal contention resolution scheme for the matroid polytope. Our results provide a broadly applicable framework for maximizing linear and submodular functions subject to independence constraints. We give several illustrative examples. Contention resolution schemes may find other applications.

[1]  Clifford Stein,et al.  Approximating Disjoint-Path Problems Using Greedy Algorithms and Packing Integer Programs ( Extended Abstract ) , 1998 .

[2]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[3]  Chandra Chekuri,et al.  Multicommodity demand flow in a tree and packing integer programs , 2007, TALG.

[4]  Jan Vondrák,et al.  A note on concentration of submodular functions , 2010, ArXiv.

[5]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[6]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[7]  Jan Vondrák,et al.  Submodularity in Combinatorial Optimization , 2007 .

[8]  George L. Nemhauser,et al.  Note--On "Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms" , 1979 .

[9]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[10]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[11]  Yuval Rabani,et al.  Improved Approximation Algorithms for Resource Allocation , 2002, IPCO.

[12]  Timothy M. Chan,et al.  Approximation Algorithms for Maximum Independent Set of Pseudo-Disks , 2012, Discret. Comput. Geom..

[13]  Uriel Feige,et al.  Approximation algorithms for allocation problems: Improving the factor of 1 - 1/e , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[14]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[15]  Aravind Srinivasan,et al.  Solving Packing Integer Programs via Randomized Rounding with Alterations , 2012, Theory Comput..

[16]  Chandra Chekuri,et al.  Multicommodity Demand Flow in a Tree , 2003, ICALP.

[17]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[18]  Amit Kumar,et al.  Approximation Algorithms for the Unsplittable Flow Problem , 2002, APPROX.

[19]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Mihalis Yannakakis,et al.  Primal-dual approximation algorithms for integral flow and multicut in trees , 1997, Algorithmica.

[22]  Joseph Naor,et al.  A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[23]  Chandra Chekuri,et al.  Unsplittable Flow in Paths and Trees and Column-Restricted Packing Integer Programs , 2009, APPROX-RANDOM.

[24]  Jason D. Hartline,et al.  Multi-parameter mechanism design and sequential posted pricing , 2009, STOC '10.

[25]  A. Frieze,et al.  Approximation algorithms for the m-dimensional 0–1 knapsack problem: Worst-case and probabilistic analyses , 1984 .

[26]  Jan Vondrák,et al.  Matroid matching: the power of local search , 2010, STOC '10.

[27]  Jan Vondrák,et al.  Optimal approximation for the submodular welfare problem in the value oracle model , 2008, STOC.

[28]  Jan Vondrák,et al.  Symmetry and Approximability of Submodular Maximization Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[29]  Sariel Har-Peled,et al.  Geometric packing under non-uniform constraints , 2011, SoCG '12.

[30]  Aaron Roth,et al.  Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms , 2010, WINE.

[31]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[32]  G. Nemhauser,et al.  Exceptional Paper—Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms , 1977 .

[33]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[34]  Hadas Shachnai,et al.  Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints , 2013, Math. Oper. Res..

[35]  V. Nagarajan,et al.  MAXIMIZING NON-MONOTONE SUBMODULAR FUNCTIONS UNDER MATROID AND KNAPSACK CONSTRAINTS , 2007 .

[36]  Qiqi Yan,et al.  Mechanism design via correlation gap , 2010, SODA '11.

[37]  Vahab S. Mirrokni,et al.  Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..

[38]  Yuval Rabani,et al.  An improved approximation algorithm for resource allocation , 2011, TALG.

[39]  Mohammad Ali Safari,et al.  Maximizing non-monotone submodular set functions subject to different constraints: Combined algorithms , 2011, Oper. Res. Lett..

[40]  Maxim Sviridenko,et al.  Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..

[41]  R. Ravi,et al.  Thresholded Covering Algorithms for Robust and Max-min Optimization , 2010, ICALP.

[42]  Shuchi Chawla,et al.  Multi-parameter mechanism design and sequential posted pricing , 2010, BQGT.

[43]  Amin Saberi,et al.  Correlation robust stochastic optimization , 2009, SODA '10.

[44]  Amin Saberi,et al.  INFORMS doi 10.1287/xxxx.0000.0000 c○0000 INFORMS Price of Correlations in Stochastic Optimization , 2022 .

[45]  Amit Kumar,et al.  Approximation Algorithms for the Unsplittable Flow Problem , 2002, Algorithmica.

[46]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[47]  Jan Vondrák,et al.  Submodular maximization by simulated annealing , 2010, SODA '11.

[48]  Timothy M. Chan,et al.  Approximation Algorithms for Maximum Independent Set of Pseudo-Disks , 2009, Discrete & Computational Geometry.

[49]  Clifford Stein,et al.  Approximating disjoint-path problems using packing integer programs , 2004, Math. Program..

[50]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[51]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[52]  Chak-Kuen Wong,et al.  Approximate Algorithms for Some Generalized Knapsack Problems , 1976, Theor. Comput. Sci..

[53]  Aravind Srinivasan,et al.  New approaches to covering and packing problems , 2001, SODA '01.

[54]  Vahab S. Mirrokni,et al.  Tight information-theoretic lower bounds for welfare maximization in combinatorial auctions , 2008, EC '08.

[55]  Uriel Feige,et al.  The Submodular Welfare Problem with Demand Queries , 2010, Theory Comput..

[56]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[57]  Aravind Srinivasan,et al.  On k-Column Sparse Packing Programs , 2009, IPCO.

[58]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[59]  Shuchi Chawla,et al.  Sequential Posted Pricing and Multi-parameter Mechanism Design , 2010, ArXiv.