Kernelization Lower Bounds for Finding Constant Size Subgraphs

Kernelization is an important tool in parameterized algorithmics. The goal is to reduce the input instance of a parameterized problem in polynomial time to an equivalent instance of the same problem such that the size of the reduced instance only depends on the parameter and not on the size of the original instance. In this paper, we provide a first conceptual study on limits of kernelization for several polynomial-time solvable problems. For instance, we consider the problem of finding a triangle with negative sum of edge weights parameterized by the maximum degree of the input graph. We prove that a linear-time computable strict kernel of truly subcubic size for this problem violates the popular APSP-conjecture.

[1]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[2]  Leland L. Beck,et al.  Smallest-last ordering and clustering and graph coloring algorithms , 1983, JACM.

[3]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[4]  Christian Komusiewicz,et al.  When can Graph Hyperbolicity be computed in Linear Time? , 2017, WADS.

[5]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[6]  Fedor V. Fomin,et al.  Kernelization Methods for Fixed-Parameter Tractability , 2014, Tractability.

[7]  Stefan Kratsch,et al.  Recent developments in kernelization: A survey , 2014, Bull. EATCS.

[8]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[9]  Huacheng Yu,et al.  Matching Triangles and Basing Hardness on an Extremely Popular Conjecture , 2015, STOC.

[10]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[11]  Rolf Niedermeier,et al.  Diminishable Parameterized Problems and Strict Polynomial Kernelization , 2018, CiE.

[12]  Yoichi Iwata,et al.  Linear-time Kernelization for Feedback Vertex Set , 2016, ICALP.

[13]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[14]  Fabrizio Grandoni,et al.  Subcubic Equivalences between Graph Centrality Problems, APSP, and Diameter , 2015, SODA.

[15]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.

[16]  Rolf Niedermeier,et al.  Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs , 2015, Theor. Comput. Sci..

[17]  Rolf Niedermeier,et al.  The Power of Data Reduction for Matching , 2016, 1609.08879.

[18]  Saket Saurabh,et al.  Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.

[19]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[20]  Michal Pilipczuk,et al.  Fully Polynomial-Time Parameterized Computations for Graphs and Matrices of Low Treewidth , 2015, SODA.

[21]  Karl Bringmann,et al.  Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[22]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[23]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[24]  Chee-Keng Yap,et al.  Some Consequences of Non-Uniform Conditions on Uniform Classes , 1983, Theor. Comput. Sci..

[25]  Joshua R. Wang,et al.  Approximation and Fixed Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs , 2016, SODA.

[26]  Amir Abboud,et al.  Popular Conjectures Imply Strong Lower Bounds for Dynamic Problems , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[27]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[28]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[29]  Frank Harary,et al.  Graph Theory , 2016 .

[30]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[31]  Yijia Chen,et al.  Lower Bounds for Kernelizations and Other Preprocessing Procedures , 2009, CiE.

[32]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[33]  Christian Komusiewicz,et al.  New Races in Parameterized Algorithmics , 2012, MFCS.

[34]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[35]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).