ROSy+: 3D Object Pose Normalization Based on PCA and Reflective Object Symmetry with Application in 3D Object Retrieval

A novel pose normalization method based on 3D object reflective symmetry is presented. It is a general purpose global pose normalization method; in this paper it is used to enhance the performance of a 3D object retrieval pipeline. Initially, the axis-aligned minimum bounding box of a rigid 3D object is modified by requiring that the 3D object is also in minimum angular difference with respect to the normals to the faces of its bounding box. To estimate the modified axis-aligned bounding box, a set of predefined planes of symmetry are used and a combined spatial and angular distance, between the 3D object and its symmetric object, is calculated. By minimizing the combined distance, the 3D object fits inside its modified axis-aligned bounding box and alignment with the coordinate system is achieved. The proposed method is incorporated in a hybrid scheme, that serves as the alignment method in a 3D object retrieval system. The effectiveness of the 3D object retrieval system, using the hybrid pose normalization scheme, is evaluated in terms of retrieval accuracy and demonstrated using both quantitative and qualitative measures via an extensive consistent evaluation on standard benchmarks. The results clearly show performance boost against current approaches.

[1]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor , 2002, ECCV.

[2]  Raif M. Rustamov,et al.  Augmented Symmetry Transforms , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[3]  Dejan V. Vranic DESIRE: a composite 3D-shape descriptor , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[4]  Seiji Ishikawa,et al.  Symmetry Identification of a 3-D Object Represented by Octree , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Karthik Ramani,et al.  Developing an engineering shape benchmark for CAD models , 2006, Comput. Aided Des..

[6]  Atilla Baskurt,et al.  Generalizations of angular radial transform for 2D and 3D shape retrieval , 2005, Pattern Recognit. Lett..

[7]  Ioannis Pratikakis,et al.  3D Object Retrieval using an Efficient and Compact Hybrid Shape Descriptor , 2008, 3DOR@Eurographics.

[8]  Paul L. Rosin,et al.  Rectilinearity of 3D Meshes , 2009, International Journal of Computer Vision.

[9]  Michael G. Strintzis,et al.  Efficient 3-D model search and retrieval using generalized 3-D radon transforms , 2006, IEEE Transactions on Multimedia.

[10]  M. Fatih Demirci,et al.  3D object retrieval using many-to-many matching of curve skeletons , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[11]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[12]  Ioannis Pratikakis,et al.  PANORAMA: A 3D Shape Descriptor Based on Panoramic Views for Unsupervised 3D Object Retrieval , 2010, International Journal of Computer Vision.

[13]  Daniel A. Keim,et al.  An experimental comparison of feature-based 3D retrieval methods , 2004, Proceedings. 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004..

[14]  Titus B. Zaharia,et al.  3D versus 2D/3D shape descriptors: a comparative study , 2004, IS&T/SPIE Electronic Imaging.

[15]  J. W. Humberston Classical mechanics , 1980, Nature.

[16]  Michael G. Strintzis,et al.  3D Model Search and Retrieval Using the Spherical Trace Transform , 2007, EURASIP J. Adv. Signal Process..

[17]  Changming Sun,et al.  3D Symmetry Detection Using The Extended Gaussian Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Hans-Peter Kriegel,et al.  3D Shape Histograms for Similarity Search and Classification in Spatial Databases , 1999, SSD.

[19]  Ioannis Pratikakis,et al.  Efficient 3D shape matching and retrieval using a concrete radialized spherical projection representation , 2007, Pattern Recognit..

[20]  Marc Rioux,et al.  Description of shape information for 2-D and 3-D objects , 2000, Signal Process. Image Commun..

[21]  Sang Uk Lee,et al.  A New MPEG-7 Standard: Perceptual 3-D Shape Descriptor , 2004, PCM.

[22]  Remco C. Veltkamp,et al.  Eurographics Workshop on 3D Object Retrieval 2010 , 2010 .

[23]  Chan-Su Shin,et al.  Maximizing the overlap of two planar convex sets under rigid motions , 2005, Symposium on Computational Geometry.

[24]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[25]  Afzal Godil,et al.  A New Shape Benchmark for 3D Object Retrieval , 2008, ISVC.

[26]  Remco C. Veltkamp,et al.  A Survey of Content Based 3D Shape Retrieval Methods , 2004, SMI.

[27]  Anne Verroust-Blondet,et al.  Alignment of 3D models , 2009, Graph. Model..

[28]  John Salmon,et al.  Automatic Creation of Object Hierarchies for Ray Tracing , 1987, IEEE Computer Graphics and Applications.

[29]  A. E. Rogers,et al.  Quaternion Parameters in the Simulation of a Spinning Rigid Body , 1965 .

[30]  Sven J. Dickinson,et al.  Skeleton based shape matching and retrieval , 2003, 2003 Shape Modeling International..

[31]  Francoise J. Preteux,et al.  3D-shape-based retrieval within the MPEG-7 framework , 2001, IS&T/SPIE Electronic Imaging.

[32]  Pan Xiang,et al.  Pose Insensitive 3D Retrieval by Poisson Shape Histogram , 2007, International Conference on Computational Science.

[33]  François X. Sillion,et al.  Accurate detection of symmetries in 3D shapes , 2006, TOGS.

[34]  Michael M. Kazhdan An Approximate and Efficient Method for Optimal Rotation Alignment of 3D Models , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Reinhard Klein,et al.  Shape retrieval using 3D Zernike descriptors , 2004, Comput. Aided Des..

[36]  Dejan V. Vranic,et al.  3D model retrieval , 2004 .

[37]  Zhiwen Yu,et al.  A Filter-Refinement Scheme for 3D Model Retrieval Based on Sorted Extended Gaussian Image Histogram , 2007, MLDM.

[38]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[39]  C. Chan,et al.  Determination of the minimum bounding box of an arbitrary solid: an iterative approach , 2001 .

[40]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[41]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[42]  Georgios Papaioannou,et al.  Graphics and Visualization: Principles & Algorithms , 2007 .

[43]  Ali Shokoufandeh,et al.  Retrieving Articulated 3-D Models Using Medial Surfaces and Their Graph Spectra , 2005, EMMCVPR.

[44]  Michael Elad,et al.  Content based retrieval of VRML objects: an iterative and interactive approach , 2002 .

[45]  Dietmar Saupe,et al.  Tools for 3D-object retrieval: Karhunen-Loeve transform and spherical harmonics , 2001, 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564).

[46]  M. Levas OBBTree : A Hierarchical Structure for Rapid Interference Detection , .

[47]  Gino van den Bergen Efficient Collision Detection of Complex Deformable Models using AABB Trees , 1997, J. Graphics, GPU, & Game Tools.

[48]  W TangelderJohan,et al.  A survey of content based 3D shape retrieval methods , 2008 .

[49]  Anne Verroust-Blondet,et al.  3D Model Retrieval Based on Depth Line Descriptor , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[50]  Guofu Zhou,et al.  L , 2021, Edinburgh Medical and Surgical Journal.

[51]  Dima Damen,et al.  Detecting Carried Objects in Short Video Sequences , 2008, ECCV.

[52]  Chan-Su Shin,et al.  Maximum overlap and minimum convex hull of two convex polyhedra under translations , 2008, Comput. Geom..

[53]  Sergios Theodoridis,et al.  Pattern Recognition, Third Edition , 2006 .

[54]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..