Kinetic behavior of porcine pancreatic phospholipase A2 on zwitterionic and negatively charged double-chain substrates.

A number of isomeric diacylglycerophosphocholines and diacylglycero sulfates containing O-acyl and/or S-acyl ester bonds were investigated as substrates for porcine pancreatic phospholipase A2 and its zymogen. A comparison is made with the kinetic properties of the enzyme toward the corresponding glycol detergents previously described [van Oort, M. G., Dijkman, R., Hille, J. D. R., & de Haas, G. H. (1985) Biochemistry (preceding paper in this issue)]. Hydrolysis of the secondary ester bond in the 1,2-diacylglycero-3-type lipids proceeds much faster than the splitting of the primary ester function present in the isomeric 1,3-diacylglycerol and 1-acylglycol derivatives. In sharp contrast to the glycol detergents, the substitution of the cleavable oxygen ester by a thio ester bond in the glycerol lipids results in 5 times lower kcat values. At alkaline pH and above the critical micelle concentration, the anionic sulfates are much better substrates than the corresponding phosphocholine-containing detergents. At very low detergent concentrations, below the critical micelle concentration, the anionic sulfates induce protein aggregation such that phospholipase A2, as well as its zymogen, is present in high molecular weight complexes containing several protein molecules. In these aggregates, protein-protein and/or lipid-protein interactions strongly activate phospholipase but not the zymogen.

[1]  K. Soda,et al.  L‐α‐Amino‐β‐thio‐ϵ‐caprolactam, a new sulfur‐containing Substrate for α‐amino‐ϵ‐caprolactam racemase , 1984 .

[2]  E. London,et al.  Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. , 1984, Analytical biochemistry.

[3]  H. Verheij,et al.  Interaction of native and modified Naja melanoleuca phospholipases A2 with the fluorescent probe 8-anilinonaphtalene-1-sulfonate. , 1984, European journal of biochemistry.

[4]  M. Egmond,et al.  Unusual kinetic behavior of porcine pancreatic (pro)phospholipase A2 on negatively charged substrates at submicellar concentrations. , 1983, Biochemistry.

[5]  M. Egmond,et al.  Aggregation of porcine pancreatic phospholipase A2 and Its zymogen induced by submicellar concentrations of negatively charged detergents. , 1983, Biochemistry.

[6]  H. Hendrickson,et al.  Chiral synthesis of a dithiolester analog of phosphatidylcholine as a substrate for the assay of phospholipase A2. , 1983, Journal of lipid research.

[7]  W G Hol,et al.  Structure of porcine pancreatic phospholipase A2 at 2.6 A resolution and comparison with bovine phospholipase A2. , 1983, Journal of molecular biology.

[8]  H. Verheij,et al.  Interaction of Phospolipase A2 form Naja melanoleuca Sanke Venom with Meoomeric Substrate Analogs , 1983 .

[9]  H. Hendrickson,et al.  Phospholipase A2 activity on mixed lipid monolayers: inhibition and activation of phospholipases A2 from porcine pancreas and Crotalus adamanteus by anionic and neutral amphiphiles. , 1981, Archives of biochemistry and biophysics.

[10]  G. Palumbo,et al.  A fluorimetric method for the estimation of the critical micelle concentration of surfactants. , 1981, Analytical biochemistry.

[11]  M. Egmond,et al.  Physicochemical studies on the interaction of pancreatic phospholipase A2 with a micellar substrate analogue. , 1981, Biochemistry.

[12]  M. Egmond,et al.  Binding of porcine pancreatic phospholipase A2 to various micellar substrate analogues. Involvement of histidine-48 and aspartic acid-49 in the binding process. , 1981, Biochemistry.

[13]  W. Hol,et al.  Structure of bovine pancreatic phospholipase A2 at 1.7A resolution. , 1981, Journal of molecular biology.

[14]  K. H. Kalk,et al.  Active site and catalytic mechanism of phospholipase A2 , 1981, Nature.

[15]  C. Yang,et al.  Chemical modification of the histidine residue in basic phospholipase A2 from the venom of Naja nigricollis. , 1980, Biochimica et biophysica acta.

[16]  E. Dennis,et al.  Interaction of phospholipase A2 from cobra venom with Cibacron Blue F3GA. , 1980, Biochemistry.

[17]  J. Drenth,et al.  Methylation of histidine-48 in pancreatic phospholipase A2. Role of histidine and calcium ion in the catalytic mechanism. , 1980, Biochemistry.

[18]  C. Yang,et al.  Chemical modification of the histidine residue in phospholipase A2 from the Hemachatus haemachatus snake venom. , 1980, Toxicon : official journal of the International Society on Toxinology.

[19]  M. Wells,et al.  Phospholipase D from savoy cabbage: purification and preliminary kinetic characterization. , 1979, Biochemistry.

[20]  A. J. Aarsman,et al.  A comparison of acyl-oxyester and acyl-thioester substrates for some lipolytic enzymes. , 1979, Biochimica et biophysica acta.

[21]  Kremer Jm,et al.  Structure and thermodynamic properties of the complexes between phospholipase A2 and lipid micelles. , 1979 .

[22]  H. Verheij,et al.  Hydrolysis of monomeric substrates by porcine pancreatic (pro)phospholipase A2. The use of a spectrophotometric assay , 1979 .

[23]  K. H. Kalk,et al.  Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A2. , 1978, Journal of molecular biology.

[24]  L. Deenen,et al.  Studies on lysophospholipases , 1976 .

[25]  M. L. Bender,et al.  Acylation of alpha-chymotrypsin by oxygen and sulfur esters of specific substrates: kinetic evidence for a tetrahedral intermediate. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[26]  W. A. Pieterson,et al.  Phospholipase A2 and its zymogen from porcine pancreas. V. Interaction of phospholipase A2 and its zymogen with divalent metal ions , 1974 .

[27]  G. de Haas,et al.  Histidine at the active site of phospholipase A2. , 1974, Biochemistry.

[28]  H. Kunze,et al.  Phospholipase A2 (phosphatide acylhydrolase, EC 3.1.1.4) from porcine pancreas. , 1974, Methods in enzymology.

[29]  R. Verger,et al.  Action of phospholipase A at interfaces. , 1973, The Journal of biological chemistry.

[30]  G. de Haas,et al.  Studies on phospholipase A and its zymogen from porcine pancreas. IV. The influence of chemical modification of the lecithin structure on substrate properties. , 1972, Biochimica et biophysica acta.

[31]  M. Wells A kinetic study of the phospholipase A 2 (Crotalus adamanteus) catalyzed hydrolysis of 1,2-dibutyryl-sn-glycero-3-phosphorylcholine. , 1972, Biochemistry.

[32]  R. Verger,et al.  Kinetic analysis of the hydrolysis of lecithin monolayers by phospholipase A. , 1971, Chemistry and physics of lipids.

[33]  M. Wells Evidence for O-acyl cleavage during hydrolysis of 1,2-diacyl-sn-glycero-3-phosphorylcholine by the phospholipase A 2 of crotalus adamanteus venom. , 1971, Biochimica et biophysica acta.

[34]  G. de Haas,et al.  Studies on phospholipase A and its zymogen from porcine pancreas. 3. Action of the enzyme on short-chain lecithins. , 1970, Biochimica et biophysica acta.

[35]  D. Arnold,et al.  Synthesen von Cholinphosphatiden, I. Zur Synthese von α‐ und β‐Lecithinen und ihren Ätheranaloga , 1967 .

[36]  L. M. Deenen,et al.  THE SUBSTRATE SPECIFICITY OF PHOSPHOLIPASE A. , 1963 .

[37]  L. M. Deenen,et al.  The stereospecific action of phospholipase A on β-lecithins , 1963 .

[38]  G. de Haas,et al.  Hydrolysis of synthetic mixed-acid phosphatides by phospholipase A from human pancreas. , 1963, Biochimica et biophysica acta.