Towards sustainable energy. Generation of hydrogen fuel using nuclear energy
暂无分享,去创建一个
T. Nejat Veziroglu | Janusz Nowotny | Tadeusz Bak | Wolfgang M. Sigmund | Michio Yamawaki | Armand J. Atanacio | Vanessa K. Peterson | Kathryn Prince | Tsuyoshi Hoshino | M. A. Alim | Mihail | M. Yamawaki | W. Sigmund | T. Veziroglu | J. Nowotny | M. Alim | K. Prince | M. Ionescu | Ionescu | T. Bak | T. Hoshino | John Dodson | Mihail Ionescu | John Dodson | A. Atanacio | V. Peterson
[1] S. A. Sherif,et al. Handbook of Hydrogen Energy , 2014 .
[2] L. Vlček,et al. Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations. , 2007 .
[3] C. Johnson,et al. Properties and performance of tritium breeding ceramics , 1992 .
[4] F. Moura,et al. Self-trapping of interacting electrons in crystalline nonlinear chains , 2012 .
[5] L. Padilla-Campos. A theoretical investigation of occupation sites for tritium atoms in lithium titanate , 2003 .
[6] K. Okuno,et al. Tritium release behavior of ceramic breeder candidates for fusion reactors , 1988 .
[7] H. Friedli,et al. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries , 1986, Nature.
[8] J. R. Powell,et al. Studies of fusion reactor blankets with minimum radioactive inventory and with tritium breeding in solid lithium compounds: a preliminary report , 1973 .
[9] Y. Oya,et al. Migration of hydrogen isotopes in lithium metatitanate , 2013 .
[10] E. Wachsman,et al. Photosensitive oxide semiconductors for solar hydrogen fuel and water disinfection , 2014 .
[11] N. Hine,et al. Point Defects and Non-stoichiometry in Li2TiO3 , 2014 .
[12] Z. Wen,et al. Effect of Ta-doping on the ionic conductivity of lithium titanate , 2010 .
[13] Yoshinori Kawamura,et al. Evaluation of Tritium Release Properties of AdvancedTritium Breeders , 2015 .
[14] P. Bonoli,et al. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets , 2014, 1409.3540.
[15] T. Nejat Veziroglu,et al. 21st Century's Energy: Hydrogen Energy System , 2008 .
[16] T. Veziroglu,et al. Remediation of greenhouse problem through replacement of fossil fuels by hydrogen , 1989 .
[17] K. Schoots,et al. Learning curves for hydrogen production technology: An assessment of observed cost reductions , 2008 .
[18] H. Oeschger,et al. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries , 1985, Nature.
[19] H. F. Zhang,et al. First-principles study of electronic, dynamical and thermodynamic properties of Li2TiO3 , 2012 .
[20] T. Veziroglu,et al. Sustainable practices: Solar hydrogen fuel and education program on sustainable energy systems , 2014 .
[21] T. Nejat Veziroglu,et al. IMPACT OF HYDROGEN ON THE ENVIRONMENT , 2011, Alternative Energy and Ecology (ISJAEE).
[22] J. Lawson. SOME CRITERIA FOR A POWER PRODUCING THERMONUCLEAR REACTOR , 1957 .
[23] Craig M. Brown,et al. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study , 2009, Nanotechnology.
[24] A. Lusis,et al. Electrical conductivity studies in the system Li2TiO3-Li1.33Ti1.67O4 , 2002 .
[25] P. Gierszewski. Review of properties of lithium metatitanate , 1998 .
[26] Eileen Claussen,et al. Climate change : science, strategies, & solutions , 2001 .
[27] Shinzaburo Matsuda,et al. The EU/JA broader approach activities , 2007 .
[28] Tsuyoshi Hoshino,et al. Development of fabrication technologies for advanced breeding functional materials For DEMO reactors , 2012 .
[29] J. V. Cathcart,et al. Tritium diffusion in rutile (TiO2) , 1979 .
[30] G. J. Hill,et al. The effect of hydrogen on the electrical properties of rutile , 1968 .
[31] S. Murphy. Tritium Solubility in Li2TiO3 from First-Principles Simulations , 2014 .
[32] H. Kleykamp,et al. Phase equilibria in the Li–Ti–O system and physical properties of Li2TiO3 , 2002 .
[33] Alan M. Baxter,et al. Deep-Burn: making nuclear waste transmutation practical , 2003 .
[34] T. Norby. Proton Conduction in Solids: Bulk and Interfaces , 2009 .
[35] P. Chester,et al. Electrolytically Induced Conductivity in Rutile , 1963, Nature.
[36] T. Nejat Veziroglu,et al. Solar hydrogen energy : the power to save the earth , 1991 .
[37] Y. Oya,et al. Dependency of irradiation damage density on tritium migration behaviors in Li2TiO3 , 2014 .
[38] Z. Wen,et al. Synthesis and ionic conductivity of Mg-doped Li2TIO3 , 2008 .
[39] N. Roux,et al. Low-temperature tritium releasing ceramics as potential materials for the ITER breeding blanket , 1996 .
[40] Yoichi Takahashi,et al. Non-stoichiometry and its effect on thermal properties of Li2TiO3 , 2002 .
[41] Per Kofstad,et al. Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. , 1972 .
[42] E. Wachsman,et al. Effect of Crystal Imperfections on Reactivity and Photoreactivity of TiO2 (Rutile) with Oxygen, Water, and Bacteria , 2011 .
[43] D. J. Suiter. Lithium-based oxide ceramics for tritium-breeding applications , 1983 .
[44] P. Knauth,et al. Electrical and Point Defect Properties of TiO2 Nanotubes Fabricated by Electrochemical Anodization , 2011 .
[45] C. D. Keeling,et al. A three‐dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data , 2013 .
[46] L. V. Brutzel,et al. Atomistic Simulation of the Structural, Thermodynamic, and Elastic Properties of Li2TiO3 , 2011 .
[47] K. Tsuchiya,et al. Preliminary test for reprocessing technology development of tritium breeders , 2009 .
[48] Agence pour l'Energie Nucléaire. Nuclear Production of Hydrogen , 2004 .