Intelligent Computing Techniques

The chapter presents various methods that can be qualified as intelligent computing ones. Different bio-inspired methods and techniques in the form of evolutionary algorithms (EAs), artificial immune systems (ANNs), particle swarm optimizers (PSOs) and artificial immune systems (AISs) are described. Moreover, information granularity attitude is introduced to model some uncertainties in material properties, geometry or boundary conditions. Granular computing techniques using interval numbers, fuzzy numbers and random variables are presented. Combinations of EAs and granular computing techniques in the form of fuzzy and stochastic EAS are proposed. Various hybrid computational intelligence algorithms combining different, intelligent or conventional techniques (e.g. gradient optimization methods) are described. A brief comparison of the effectiveness of selected bio-inspired optimization methods (PSO, EA and AIS) for the chosen test functions is also included.

[1]  Andrzej Bargiela,et al.  Toward a Theory of Granular Computing for Human-Centered Information Processing , 2008, IEEE Transactions on Fuzzy Systems.

[2]  Erick Cantú-Paz,et al.  A Survey of Parallel Genetic Algorithms , 2000 .

[3]  Yung-ming Cheng,et al.  Performance studies on six heuristic global optimization methods in the location of critical slip surface , 2007 .

[4]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[5]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[6]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[7]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[8]  Kishan G. Mehrotra,et al.  Elements of artificial neural networks , 1996 .

[9]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[10]  Abdul Ahad,et al.  Basics of Immunology , 2011 .

[11]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[12]  Tadeusz Burczyński,et al.  The Evolutionary algorithm in stochastic optimization and identification problems , 2006 .

[13]  Reiko Tanese,et al.  Distributed Genetic Algorithms , 1989, ICGA.

[14]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[15]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[16]  T. Burczynski,et al.  Theoretical and computational aspects of the stochastic boundary element method , 1999 .

[17]  Li Chen,et al.  Fuzzy finite-element approach for the vibration analysis of imprecisely-defined systems , 1997 .

[18]  Peter J. Bentley,et al.  Don't push me! Collision-avoiding swarms , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[19]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[20]  Riccardo Poli,et al.  Particle Swarm Optimisation , 2011 .

[21]  Fernando José Von Zuben,et al.  Immune and Neural Network Models: Theoretical and Empirical Comparisons , 2001, Int. J. Comput. Intell. Appl..

[22]  Michael Hanss,et al.  Applied Fuzzy Arithmetic , 2005 .

[23]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[24]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[25]  Antoni Skrobol,et al.  Fuzzy-neural and evolutionary computation in identification of defects , 2004 .

[26]  Kaj Madsen,et al.  Introduction to Interval Analysis , 2002 .

[27]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[28]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1987, SIGGRAPH.

[29]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[30]  Selangor Darul Ehsan,et al.  A Comparative Analysis on the Performance of Particle Swarm Optimization and Artificial Immune Systems for Mathematical Test Functions. , 2009 .

[31]  Raghavan Srinivasan,et al.  Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model , 2009 .

[32]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[33]  Jarmo T. Alander,et al.  An Indexed Bibliography of Distributed Genetic Algorithms , 2012 .

[34]  Stephanie Forrest,et al.  Coverage and Generalization in an Artificial Immune System , 2002, GECCO.

[35]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[36]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[37]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[38]  G. Alefeld,et al.  Interval analysis: theory and applications , 2000 .

[39]  Andrzej Bargiela,et al.  Granular Computing as an Emerging Paradigm of Information Processing , 2003 .

[40]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[41]  J. Toner,et al.  Flocks, herds, and schools: A quantitative theory of flocking , 1998, cond-mat/9804180.

[42]  Jonathan Timmis,et al.  Artificial immune systems as a novel soft computing paradigm , 2003, Soft Comput..

[43]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .