Poincaré-Melnikov-Arnold method for analytic planar maps

The Poincare-Melnikov-Arnold method for planar maps gives rise to a Melnikov function defined by an infinite and (a priori) analytically uncomputable sum. Under an assumption of meromorphicity, residues theory can be applied to provide an equivalent finite sum. Moreover, the Melnikov function turns out to be an elliptic function and a general criterion about non-integrability is provided. Several examples are presented with explicit estimates of the splitting angle. In particular, the non-integrability of non-trivial symmetric entire perturbations of elliptic billiards is proved, as well as the non-integrability of standard-like maps.

[1]  Robert W. Easton,et al.  Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas , 1984 .

[2]  T. M. Seara,et al.  An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum , 1992 .

[3]  V. Lazutkin Splitting of complex separatrices , 1988 .

[4]  J. Gambaudo Perturbation of a Hopf Bifurcation by an External Time- Periodic Forcing , 1985 .

[5]  P. Levallois,et al.  Séparation des séparatrices du billard elliptique pour une perturbation algébrique et symétrique de l'ellipse , 1993 .

[6]  Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors , 1978 .

[7]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[8]  V. V. Kozlov,et al.  Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts , 1991 .

[9]  V. F. Lazutkin,et al.  Exponentially small splittings in Hamiltonian systems. , 1991, Chaos.

[10]  Y. Suris,et al.  Integrable mappings of the standard type , 1989 .

[11]  Vladimir I. Arnold,et al.  Instability of Dynamical Systems with Several Degrees of Freedom , 2020, Hamiltonian Dynamical Systems.

[12]  P. Levallois Non-integrabilite des billards definis par certaines perturbations algebriques d'une ellipse, et du flot geodesique de certaines perturbations algebriques d'un ellipsoide , 1993 .

[13]  M. B. Tabanov Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse. , 1994, Chaos.

[14]  Carles Simó,et al.  The splitting of separatrices for analytic diffeomorphisms , 1990, Ergodic Theory and Dynamical Systems.

[15]  M. Glasser,et al.  Mel'nikov's function for two-dimensional mappings , 1989 .

[16]  Jürgen Moser,et al.  The analytic invariants of an area‐preserving mapping near a hyperbolic fixed point , 1956 .

[17]  V. F. Lazutkin,et al.  A refined formula for the separatrix splitting for the standard map , 1994 .

[18]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.