Never mind the length, feel the quality: the impact of long-term epidemiological data sets on theory, application and policy.

Infectious diseases have been a prime testing ground for ecological theory. However, the ecological perspective is increasingly recognized as essential in epidemiology. Long-term, spatially resolved reliable data on disease incidence and the ability to test them using mechanistic models have been critical in this cross-fertilization. Here, we review some of the key intellectual developments in epidemiology facilitated by long-term data. We identify research frontiers at the interface of ecology and epidemiology and their associated data needs.

[1]  James H. Brown,et al.  Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction , 1977 .

[2]  J. Yorke,et al.  Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. , 1973, American journal of epidemiology.

[3]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[4]  David L Smith,et al.  Predicting the spatial dynamics of rabies epidemics on heterogeneous landscapes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Keeling,et al.  The Interplay between Determinism and Stochasticity in Childhood Diseases , 2002, The American Naturalist.

[6]  S. B. Pole,et al.  Predictive Thresholds for Plague in Kazakhstan , 2004, Science.

[7]  L. Olsen,et al.  Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. , 1990, Science.

[8]  Y. Xia,et al.  Measles Metapopulation Dynamics: A Gravity Model for Epidemiological Coupling and Dynamics , 2004, The American Naturalist.

[9]  S. Ellner,et al.  Chaos in Ecology: Is Mother Nature a Strange Attractor?* , 1993 .

[10]  R. Irizarry,et al.  Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand , 2004, Nature.

[11]  Stephen P. Ellner,et al.  POPULATION CYCLES IN THE PINE LOOPER MOTH: DYNAMICAL TESTS OF MECHANISTIC HYPOTHESES , 2005 .

[12]  J. Graunt,et al.  Natural and political observations made upon the bills of mortality , 1939 .

[13]  R. Levins Some Demographic and Genetic Consequences of Environmental Heterogeneity for Biological Control , 1969 .

[14]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[15]  N. Stenseth,et al.  Multiannual Vole Cycles and Population Regulation during Long Winters: An Analysis of Seasonal Density Dependence , 1999, The American Naturalist.

[16]  Aaron A King,et al.  Evolution of Acute Infections and the Invasion‐Persistence Trade‐Off , 2009, The American Naturalist.

[17]  N. Stenseth,et al.  Cycles and trends in cod populations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F van den Bosch,et al.  On the spread of plant disease: a theory on foci. , 1994, Annual review of phytopathology.

[19]  N. Ferguson,et al.  Ecological and immunological determinants of influenza evolution , 2003, Nature.

[20]  Christl A. Donnelly,et al.  Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain , 2001, Nature.

[21]  Rachel Kuske,et al.  Sustained oscillations via coherence resonance in SIR. , 2007, Journal of theoretical biology.

[22]  Andrew M. Liebhold,et al.  1200 years of regular outbreaks in alpine insects , 2007, Proceedings of the Royal Society B: Biological Sciences.

[23]  Norman T. J. Bailey,et al.  The Mathematical Theory of Infectious Diseases , 1975 .

[24]  K. Ungchusak,et al.  Dengue haemorrhagic fever in Thailand, 1987. , 1988, The Southeast Asian journal of tropical medicine and public health.

[25]  H. G. Andrewartha,et al.  The distribution and abundance of animals. , 1954 .

[26]  O. Bjørnstad,et al.  Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series sir model , 2002 .

[27]  E. C. Holmes,et al.  Cross-protective immunity can account for the alternating epidemic pattern of dengue virus serotypes circulating in Bangkok , 2006, Proceedings of the National Academy of Sciences.

[28]  S. Lal,et al.  Epidemiology and control of malaria , 1999, Indian journal of pediatrics.

[29]  O. Diekmann,et al.  Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation , 2000 .

[30]  N. Ferguson,et al.  Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. , 1998, Science.

[31]  O. Diekmann Mathematical Epidemiology of Infectious Diseases , 1996 .

[32]  S. Tjoa,et al.  PRACTOLOL IN THE CONTROL OF INTRAOCULAR TENSION , 1974 .

[33]  R. Anderson,et al.  Measles in developing countries Part I. Epidemiological parameters and patterns , 1988, Epidemiology and Infection.

[34]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[35]  D. Earn,et al.  Opposite patterns of synchrony in sympatric disease metapopulations. , 1999, Science.

[36]  Durland Fish,et al.  Effect of Climate Change on Lyme Disease Risk in North America , 2005, EcoHealth.

[37]  John M Drake,et al.  Environmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion , 2009, Proceedings of the National Academy of Sciences.

[38]  J. A.,et al.  The Self-Adjustment of Populations to Change , 2008 .

[39]  E L Ionides,et al.  Inference for nonlinear dynamical systems , 2006, Proceedings of the National Academy of Sciences.

[40]  R. Antia,et al.  The dynamics of acute malaria infections. I. Effect of the parasite's red blood cell preference , 2008, Proceedings of the Royal Society B: Biological Sciences.

[41]  W M Schaffer,et al.  The case for chaos in childhood epidemics. II. Predicting historical epidemics from mathematical models , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  Edward L. Ionides,et al.  Plug-and-play inference for disease dynamics: measles in large and small populations as a case study , 2009, Journal of The Royal Society Interface.

[43]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[44]  F. Black,et al.  Measles endemicity in insular populations: critical community size and its evolutionary implication. , 1966, Journal of theoretical biology.

[45]  Troy Day,et al.  Linking within- and between-host dynamics in the evolutionary epidemiology of infectious diseases. , 2008, Trends in ecology & evolution.

[46]  S. Lele,et al.  The nature of scientific evidence : statistical, philosophical, and empirical considerations , 2004 .

[47]  Pejman Rohani,et al.  Ecological and immunological determinants of dengue epidemics. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[48]  George Sugihara,et al.  Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series , 1990, Nature.

[49]  Bryan T Grenfell,et al.  Dynamics and selection of many-strain pathogens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  C. Creighton A History of Epidemics in Britain , 1895, Nature.

[51]  W M Schaffer,et al.  Chaos in ecological systems: The coals that Newcastle forgot. , 1986, Trends in ecology & evolution.

[52]  C A Gilligan,et al.  Bayesian analysis of botanical epidemics using stochastic compartmental models. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  H. E. Soper The Interpretation of Periodicity in Disease Prevalence , 1929 .

[54]  D. Rogers,et al.  The Global Spread of Malaria in a Future , Warmer World , 2022 .

[55]  P. Rohani,et al.  Estimating the Duration of Pertussis Immunity Using Epidemiological Signatures , 2009, PLoS pathogens.

[56]  D. Earn,et al.  Transients and attractors in epidemics , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[57]  B. Grenfell,et al.  Epidemiological impact of vaccination on the dynamics of two childhood diseases in rural Senegal. , 2005, Microbes and infection.

[58]  K. Dietz,et al.  The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations , 1976 .

[59]  C. Jessica E. Metcalf,et al.  Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen , 2009, Proceedings of the Royal Society B: Biological Sciences.

[60]  M. Pascual,et al.  Inapparent infections and cholera dynamics , 2008, Nature.

[61]  Bärbel Finkenstädt,et al.  Time series modelling of childhood diseases: a dynamical systems approach , 2000 .

[62]  Pejman Rohani,et al.  Persistence, chaos and synchrony in ecology and epidemiology , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  B. Bolker,et al.  Chaos and biological complexity in measles dynamics , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[64]  Mark Bartlett,et al.  The Critical Community Size for Measles in the United States , 1960 .

[65]  N. Andrews,et al.  Incidence of 2009 pandemic influenza A H1N1 infection in England: a cross-sectional serological study , 2010, The Lancet.

[66]  J. Botella de Maglia,et al.  [Prevention of malaria]. , 1999, Revista clinica espanola.

[67]  C. Viboud,et al.  A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data , 2004, Statistics in medicine.

[68]  D. Earn,et al.  A simple model for complex dynamical transitions in epidemics. , 2000, Science.

[69]  Andreas Handel,et al.  Towards a quantitative understanding of the within-host dynamics of influenza A infections , 2010, Journal of The Royal Society Interface.

[70]  Matt J Keeling,et al.  Disease evolution across a range of spatio-temporal scales. , 2006, Theoretical population biology.

[71]  Jim M Cushing,et al.  Nonlinear Stochastic Population Dynamics: The Flour Beetle Tribolium as an Effective Tool of Discovery , 2005 .

[72]  A. Newsholme A National System of Notification and Registration of Sickness , 1896 .

[73]  L. Rogers The world incidence of leprosy in relation to meteorological conditions and its bearing on the probable mode of transmission , 1923 .

[74]  Cécile Viboud,et al.  Demographic Variability, Vaccination, and the Spatiotemporal Dynamics of Rotavirus Epidemics , 2009, Science.

[75]  William A. Nelson,et al.  Small-amplitude cycles emerge from stage-structured interactions in Daphnia–algal systems , 2008, Nature.

[76]  Alan S Perelson,et al.  HIV dynamics with multiple infections of target cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  R. May,et al.  Population biology of infectious diseases: Part I , 1979, Nature.

[78]  Aidan McDermott,et al.  The Impact of the Demographic Transition on Dengue in Thailand: Insights from a Statistical Analysis and Mathematical Modeling , 2009, PLoS medicine.

[79]  D. Henderson,et al.  Cholera Dynamics and El Niño – Southern Oscillation , 2010 .

[80]  O. Pybus,et al.  Unifying the Epidemiological and Evolutionary Dynamics of Pathogens , 2004, Science.

[81]  M. Pascual,et al.  Stochastic amplification in epidemics , 2007, Journal of The Royal Society Interface.

[82]  O. Bjørnstad,et al.  The dynamics of measles in sub-Saharan Africa , 2008, Nature.

[83]  S. Cornell,et al.  Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape , 2001, Science.

[84]  P. Haggett,et al.  Deciphering global epidemics: Appendices , 1998 .

[85]  R. Anderson,et al.  Measles in developing countries. Part II. The predicted impact of mass vaccination , 1988, Epidemiology and Infection.

[86]  R. Mikolajczyk,et al.  Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases , 2008, PLoS medicine.

[87]  Andy Fenton,et al.  Community Epidemiology Framework for Classifying Disease Threats , 2005, Emerging infectious diseases.

[88]  O. Bjørnstad,et al.  Travelling waves and spatial hierarchies in measles epidemics , 2001, Nature.

[89]  Mercedes Pascual,et al.  Disentangling Extrinsic from Intrinsic Factors in Disease Dynamics: A Nonlinear Time Series Approach with an Application to Cholera , 2004, The American Naturalist.

[90]  Andreas Handel,et al.  Neuraminidase Inhibitor Resistance in Influenza: Assessing the Danger of Its Generation and Spread , 2007, PLoS Comput. Biol..

[91]  Andrew J Black,et al.  Stochastic fluctuations in the susceptible-infective-recovered model with distributed infectious periods. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[92]  R. Ostfeld,et al.  Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems , 2010 .

[93]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[94]  P. Rohani,et al.  Ecological interference between fatal diseases , 2003, Nature.

[95]  Romulus Breban,et al.  Quantifying the treatment efficacy of reverse transcriptase inhibitors: new analyses of clinical data based on within-host modeling , 2009, BMC public health.

[96]  E. Arjas,et al.  A Hierarchical Bayesian Model to Predict the Duration of Immunity to Haemophilus Influenzas Type B , 1999, Biometrics.

[97]  A. Drummond,et al.  A Virus Reveals Population Structure and Recent Demographic History of Its Carnivore Host , 2006, Science.

[98]  R. Snow,et al.  A climate-based distribution model of malaria transmission in sub-Saharan Africa. , 1999, Parasitology today.

[99]  Mark A. Miller,et al.  Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza , 2006, Science.

[100]  Stephen P. Ellner,et al.  Chaos in a Noisy World: New Methods and Evidence from Time-Series Analysis , 1995, The American Naturalist.

[101]  Aravind Srinivasan,et al.  Modelling disease outbreaks in realistic urban social networks , 2004, Nature.

[102]  Steve Valeika,et al.  Avian influenza virus in water: infectivity is dependent on pH, salinity and temperature. , 2009, Veterinary microbiology.

[103]  Maurice S. Bartlett,et al.  Stochastic Processes or the Statistics of Change , 1953 .

[104]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[105]  J. Vik,et al.  Wavelet analysis of ecological time series , 2008, Oecologia.