Self-organized branching processes: Avalanche models with dissipation.

We explore, in the mean-field approximation, robustness with respect to dissipation of self-organized criticality in sandpile models. To this end, we generalize a recently introduced self-organized branching process, and show that the model self-organizes not into a critical state but rather into a subcritical state: when dissipation is present, the dynamical fixed point does not coincide with the critical point. Thus the level of dissipation acts as a relevant parameter in the renormalization-group sense. We study the model numerically and compute analytically the critical exponents for the avalanche size and lifetime distributions and the scaling exponents for the corresponding cutoffs. @S1063-651X~96!08009-9#