A 5.9-kb tandem repeat at the euchromatin-heterochromatin boundary of the X chromosome of Drosophila melanogaster

[1]  M. Carmena,et al.  Transposable elements map in a conserved pattern of distribution extending from beta-heterochromatin to centromeres in Drosophila melanogaster , 1995, Chromosoma.

[2]  A. Spradling,et al.  Replication forks are not found in a Drosophila minichromosome demonstrating a gradient of polytenization , 1992, Chromosoma.

[3]  M. Gatti,et al.  Cytological and genetic analysis of the Y chromosome of Drosophila melanogaster , 1983, Chromosoma.

[4]  P. Dimitri Constitutive heterochromatin and transposable elements in Drosophila melanogaster , 2004, Genetica.

[5]  E. H. Cohen,et al.  Repetitive DNA sequences in Drosophila , 2004, Chromosoma.

[6]  K. W. Cooper Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of “heterochromatin” , 2004, Chromosoma.

[7]  R. H.J.MULLE THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE , 2002 .

[8]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[9]  R. Glaser,et al.  Replication of Heterochromatin and Structure of Polytene Chromosomes , 2000, Molecular and Cellular Biology.

[10]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[11]  S. Henikoff Heterochromatin function in complex genomes. , 2000, Biochimica et biophysica acta.

[12]  Rastogi Pa,et al.  MacVector. Integrated sequence analysis for the Macintosh. , 2000 .

[13]  P. Rastogi,et al.  MacVector. Integrated sequence analysis for the Macintosh. , 2000, Methods in molecular biology.

[14]  P. Dimitri,et al.  Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. , 1999, Trends in genetics : TIG.

[15]  J. Jurka,et al.  Repeats in genomic DNA: mining and meaning. , 1998, Current opinion in structural biology.

[16]  S Henikoff,et al.  Something from nothing: the evolution and utility of satellite repeats. , 1998, Trends in genetics : TIG.

[17]  G. Karpen,et al.  Molecular Structure of a Functional Drosophila Centromere , 1997, Cell.

[18]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[19]  K. O'hare,et al.  A 1.5 kb repeat sequence flanks the suppressor of forked gene at the euchromatin-heterochromatin boundary of the Drosophila melanogaster X chromosome. , 1996, Genetical research.

[20]  K. O'hare,et al.  Interallelic complementation at the suppressor of forked locus of Drosophila reveals complementation between suppressor of forked proteins mutated in different regions. , 1996, Genetics.

[21]  A. Hilliker,et al.  Return of the H-word (heterochromatin). , 1995, Current opinion in genetics & development.

[22]  G. Karpen,et al.  Islands of complex DNA are widespread in Drosophila centric heterochromatin. , 1995, Genetics.

[23]  C. Caggese,et al.  Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[25]  Wolfgang Stephan,et al.  The evolutionary dynamics of repetitive DNA in eukaryotes , 1994, Nature.

[26]  A. Spradling,et al.  A transposable element can drive the concerted evolution of tandemly repetitious DNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Steven Henikoff,et al.  Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila , 1994, Cell.

[28]  John M. Hancock,et al.  SIMPLE34: an improved and enhanced implementation for VAX and Sun computers of the SIMPLE algorithm for analysis of clustered repetitive motifs in nucleotide sequences , 1994, Comput. Appl. Biosci..

[29]  S. Olson MacVector: sequence comparisons using a matrix method. , 1994, Methods in molecular biology.

[30]  A. Hilliker,et al.  Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. , 1993, Genetics.

[31]  M. Aguadé,et al.  Lack of correlation between interspecific divergence and intraspecific polymorphism at the suppressor of forked region in Drosophila melanogaster and Drosophila simulans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  K. O'hare,et al.  Homology with Saccharomyces cerevisiae RNA14 suggests that phenotypic suppression in Drosophila melanogaster by suppressor of forked occurs at the level of RNA stability. , 1993, Genes & development.

[33]  S. Williams,et al.  Molecular genetic analysis of Drosophila rDNA arrays. , 1992, Trends in genetics : TIG.

[34]  D. Lindsley,et al.  The Genome of Drosophila Melanogaster , 1992 .

[35]  M. Best-Belpomme,et al.  A short 5' region of the long terminal repeat is required for regulation by hormone and heat shock of Drosophila retrotransposon 1731. , 1991, Nucleic acids research.

[36]  N. Nassif,et al.  Targeted gene replacement in Drosophila via P element-induced gap repair , 1991, Science.

[37]  H. Lehrach,et al.  Use of high coverage reference libraries of Drosophila melanogaster for relational data analysis. A step towards mapping and sequencing of the genome. , 1991, Journal of molecular biology.

[38]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[39]  J. Davies,et al.  Molecular and cytogenetic analysis of the heterochromatin-euchromatin junction region of the Drosophila melanogaster X chromosome using cloned DNA sequences. , 1990, Genetics.

[40]  K. Gupta,et al.  Initiation of translation at CUG, GUG, and ACG codons in mammalian cells. , 1990, Gene.

[41]  A. Pélisson,et al.  Characterization of 5' truncated transposed copies of the I factor in Drosophila melanogaster. , 1989, Nucleic acids research.

[42]  N. Perrimon,et al.  Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. , 1989, Genetics.

[43]  F. Fourcade-Peronnet,et al.  Primary structure and functional organization of Drosophila 1731 retrotransposon , 1988, Nucleic Acids Res..

[44]  J. Davies,et al.  Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[45]  D. Brutlag,et al.  Multiplicity of satellite DNA sequences in Drosophila melanogaster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Hobbs,et al.  A structural basis for variegating position effects , 1984, Cell.

[47]  N. Murray Phage Lambda and Molecular Cloning , 1983 .

[48]  A. Hilliker,et al.  The cytogenetic boundaries of the rDNA region within heterochromatin in the X chromosome of Drosophila melanogaster and their relation to male meiotic pairing sites. , 1982, Genetical research.

[49]  J. Lis,et al.  DNA sequence analysis reveals extensive homologies of regions preceding hsp70 and αβ heat shock genes in Drosophila melanogaster , 1981 .

[50]  A. Hilliker,et al.  The genetic analysis of D. melanogaster heterochromatin , 1980, Cell.

[51]  M. Ross The Genetics and Biology of Drosophila, Vol. 1B , 1976 .

[52]  C. Laird DNA of Drosophila chromosomes. , 1973, Annual review of genetics.

[53]  J. B. Boyd,et al.  Sequence diversity of polytene chromosome DNA from Drosophila hydei. , 1971, Journal of molecular biology.

[54]  John,et al.  Genomic organization and transcription of the a6 heat shock DNA in Drosophila melanogaster , 2022 .