Superconvergence Analysis of Finite Element Method for a Second-Type Variational Inequality

This paper studies the finite element (FE) approximation to a second-type variational inequality. The supe rclose and superconvergence results are obtained for conforming bilinear FE and nonconforming FE schemes under a reasonable regularity of the exact solution , which seem to be never discovered in the previous literature. The optimal -norm error estimate is also derived for FE. At last, some numerical results are provided to verify the theoretical analysis.

[1]  Dongyang Shi,et al.  A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes , 2007 .

[2]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[3]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[4]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[5]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[6]  Qun Lin,et al.  Superconvergence of finite element method for the Signorini problem , 2008 .

[7]  F. T. Suttmeier,et al.  Adaptive finite elements for a certain class of variational inequalities of second kind , 2011 .

[8]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[9]  Gilbert Strang The Finite Element Method--Linear and Nonlinear Applications , 1974 .

[10]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[11]  D Shi,et al.  A Kind of Full-Discrete Nonconforming Finite Element Method for the Parabolic Variational Inequality , 2008 .

[12]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[13]  Shi Dong-yang Anisotropic Nonconforming Finite Element Approximation to Variational Inequality Problems with Displacement Obstacle , 2006 .

[14]  Hua,et al.  THE NONCONFORMING FINITE ELEMENT METHOD FOR SIGNORINI PROBLEM , 2007 .

[15]  G. Stampacchia,et al.  On some non-linear elliptic differential-functional equations , 1966 .

[16]  Faker Ben Belgacem,et al.  Quadratic finite element approximation of the Signorini problem , 2003, Math. Comput..

[17]  Lie-heng Wang,et al.  On the quadratic finite element approximation to the obstacle problem , 2002, Numerische Mathematik.

[18]  Franco Brezzi,et al.  A finite element approximation of a variational inequality related to hydraulics , 1976 .

[19]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[20]  Lie-hengWang ON THE ERROR ESTIMATE OF NONCONFORMING FINITE ELEMENT APPROXIMATION TO THE OBSTACLE PROBLEM , 2003 .

[21]  Jincheng Ren,et al.  Convergence and superconvergence analysis of a nonconforming finite element method for solving the Signorini problem , 2012 .