Nanoscale molecular traps and dams for ultrafast protein enrichment in high-conductivity buffers.

We report a new approach, molecular dam, to enhance mass transport for protein enrichment in nanofluidic channels by nanoscale electrodeless dielectrophoresis under physiological buffer conditions. Dielectric nanoconstrictions down to 30 nm embedded in nanofluidic devices serve as field-focusing lenses capable of magnifying the applied field to 10(5)-fold when combined with a micro- to nanofluidic step interface. With this strong field and the associated field gradient at the nanoconstrictions, proteins are enriched by the molecular damming effect faster than the trapping effect, to >10(5)-fold in 20 s, orders of magnitude faster than most reported methods. Our study opens further possibilities of using nanoscale molecular dams in miniaturized sensing platforms for rapid and sensitive protein analysis and biomarker discovery, with potential applications in precipitation studies and protein crystallization and possible extensions to small-molecules enrichment or screening.

[1]  H. A. Pohl,et al.  Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields , 1978 .

[2]  Chia-Fu Chou,et al.  Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis. , 2009, Lab on a chip.

[3]  J. Crain,et al.  Dielectrophoretic manipulation of ribosomal RNA. , 2011, Biomicrofluidics.

[4]  W. Wang,et al.  Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating. , 2011, Lab on a chip.

[5]  P. Gascoyne,et al.  Particle separation by dielectrophoresis , 2002, Electrophoresis.

[6]  Ruey-Jen Yang,et al.  A nanochannel‐based concentrator utilizing the concentration polarization effect , 2008, Electrophoresis.

[7]  A. Manz,et al.  Micro total analysis systems. Recent developments. , 2004, Analytical chemistry.

[8]  Liming Ying,et al.  Trapping of proteins under physiological conditions in a nanopipette. , 2005, Angewandte Chemie.

[9]  A. Manz,et al.  Lab-on-a-chip: microfluidics in drug discovery , 2006, Nature Reviews Drug Discovery.

[10]  P. Sheehan,et al.  Detection limits for nanoscale biosensors. , 2005, Nano letters.

[11]  Dapeng Wu,et al.  High speed nanofluidic protein accumulator. , 2009, Lab on a chip.

[12]  R. Pethig Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells , 1996 .

[13]  G van den Engh,et al.  Trapping of DNA in nonuniform oscillating electric fields. , 1998, Biophysical journal.

[14]  C. Chou,et al.  Floating-electrode enhanced constriction dielectrophoresis for biomolecular trapping in physiological media of high conductivity. , 2012, Biomicrofluidics.

[15]  Milton L. Lee,et al.  Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G, preconcentration of low abundance proteins and separation by capillary zone electrophoresis. , 2007, Journal of chromatography. A.

[16]  S. Evans,et al.  Concentrating membrane proteins using asymmetric traps and AC electric fields. , 2011, Journal of the American Chemical Society.

[17]  Chia-Fu Chou,et al.  Electrodeless dielectrophoresis of single- and double-stranded DNA. , 2002, Biophysical journal.

[18]  D. Inglis,et al.  Simultaneous concentration and separation of proteins in a nanochannel. , 2011, Angewandte Chemie.

[19]  Adam E Cohen,et al.  The cat that caught the canary: what to do with single-molecule trapping. , 2011, ACS nano.

[20]  A. Singh,et al.  Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. , 2003, Analytical chemistry.

[21]  R. Pethig Review article-dielectrophoresis: status of the theory, technology, and applications. , 2010, Biomicrofluidics.

[22]  F J Rixon,et al.  Manipulation of herpes simplex virus type 1 by dielectrophoresis. , 1998, Biochimica et biophysica acta.

[23]  Muhammad A. Alam,et al.  Performance limits of nanobiosensors , 2006 .

[24]  J. Eijkel,et al.  Principles and applications of nanofluidic transport. , 2009, Nature nanotechnology.

[25]  L. Locascio,et al.  Microfluidic temperature gradient focusing. , 2002, Analytical chemistry.

[26]  Bingcheng Lin,et al.  On‐line isotachophoretic preconcentration and gel electrophoretic separation of sodium dodecyl sulfate‐proteins on a microchip , 2005, Electrophoresis.

[27]  M. Burns,et al.  Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. , 2006, Analytical chemistry.

[28]  Micro-flow injection analysis system: on-chip sample preconcentration, injection and delivery using coupled monolithic electroosmotic pumps. , 2007, Lab on a chip.

[29]  F. Zenhausern,et al.  Electrodeless dielectrophoresis for micro total analysis systems , 2003, IEEE Engineering in Medicine and Biology Magazine.

[30]  N. Pourmand,et al.  Dynamic Control of Nanoprecipitation in a Nanopipette , 2011, ACS nano.

[31]  A. L. Stevens,et al.  Million-fold preconcentration of proteins and peptides by nanofluidic filter. , 2005, Analytical chemistry.

[32]  Hsueh-Chia Chang,et al.  Induced dipoles and dielectrophoresis of nanocolloids in electrolytes. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Yong-Ak Song,et al.  Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. , 2008, Lab on a chip.

[34]  Michael P Hughes,et al.  Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems , 2002, Electrophoresis.

[35]  E. Cummings,et al.  Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. , 2004, Analytical chemistry.

[36]  Ralf Eichhorn,et al.  Electrodeless dielectrophoresis for bioanalysis: Theory, devices and applications , 2011, Electrophoresis.

[37]  Marco Rito-Palomares,et al.  Dielectrophoresis for the manipulation of nanobioparticles , 2007, Electrophoresis.

[38]  C. Ivory,et al.  Protein Focusing in a Conductivity Gradient , 1998, Biotechnology progress.

[39]  Soumya K. Srivastava,et al.  DC insulator dielectrophoretic applications in microdevice technology: a review , 2011, Analytical and bioanalytical chemistry.

[40]  Andreas Manz,et al.  Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip , 2007, Electrophoresis.

[41]  M. Rito‐Palomares,et al.  Protein manipulation with insulator-based dielectrophoresis and direct current electric fields. , 2008, Journal of chromatography. A.