On the use of Saint Venant equations to simulate the spreading of a granular mass

[1] Cliff collapse is an active geomorphological process acting at the surface of the Earth and telluric planets. Recent laboratory studies have investigated the collapse of an initially cylindrical granular mass along a rough horizontal plane for different initial aspect ratios a = Hi/Ri, where Hi and Ri are the initial height and radius, respectively. A numerical simulation of these experiments is performed using a minimal depth-integrated model based on a long-wave approximation. A dimensional analysis of the equations shows that such a model exhibits the scaling laws observed experimentally. Generic solutions are independent of gravity and depend only on the initial aspect ratio a and an effective friction angle. In terms of dynamics, the numerical simulations are consistent with the experiments for a ≤ 1. The experimentally observed saturation of the final height of the deposit, when normalized with respect to the initial radius of the cylinder, is accurately reproduced numerically. Analysis of the results sheds light on the correlation between the area overrun by the granular mass and its initial potential energy. The extent of the deposit, the final height, and the arrest time of the front can be directly estimated from the “generic solution” of the model for terrestrial and extraterrestrial avalanches. The effective friction, a parameter classically used to describe the mobility of gravitational flows, is shown to depend on the initial aspect ratio a. This dependence should be taken into account when interpreting the high mobility of large volume events.

[1]  R. Kerswell,et al.  Dam break with Coulomb friction: a model for granular slumping , 2005 .

[2]  F. Bouchut Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: and Well-Balanced Schemes for Sources , 2005 .

[3]  H. Huppert,et al.  Axisymmetric collapses of granular columns , 2004, Journal of Fluid Mechanics.

[4]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[5]  Jean-Pierre Vilotte,et al.  Spreading of a granular mass on a horizontal plane , 2004 .

[6]  西村 浩一 Geophysical Granular and Particle Laden Flows Workshop 参加報告 , 2004 .

[7]  R. Denlinger,et al.  Granular avalanches across irregular three‐dimensional terrain: 2. Experimental tests , 2004 .

[8]  Richard M. Iverson,et al.  Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation , 2004 .

[9]  N. Thomas,et al.  Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits , 2003, cond-mat/0312541.

[10]  Jean-Pierre Vilotte,et al.  Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme , 2003 .

[11]  A. Patra,et al.  Computing granular avalanches and landslides , 2003 .

[12]  A. Patra,et al.  Evaluating Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier, Washington , 2003 .

[13]  D. Volfson,et al.  Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M. Quecedo,et al.  Modelling tailings dams and mine waste dumps failures , 2002 .

[15]  Jean-Pierre Vilotte,et al.  Preavalanche instabilities in a granular pile. , 2002, Physical review letters.

[16]  F. Legros The mobility of long-runout landslides , 2002 .

[17]  L. Tsimring,et al.  Continuum theory of partially fluidized granular flows. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Olivier Pouliquen,et al.  Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane , 2001, Journal of Fluid Mechanics.

[19]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 2. Numerical predictions and experimental tests , 2001 .

[20]  Richard M. Iverson,et al.  Flow of variably fluidized granular masses across three‐dimensional terrain: 1. Coulomb mixture theory , 2001 .

[21]  P. Heinrich,et al.  Analytical Solution for Testing Debris Avalanche Numerical Models , 2000 .

[22]  G. Grest,et al.  Gravity-driven dense granular flows , 2000, cond-mat/0005051.

[23]  Kolumban Hutter,et al.  Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature , 1999, Journal of Fluid Mechanics.

[24]  S. Douady,et al.  Sensitivity of granular surface flows to preparation , 1999 .

[25]  Kolumban Hutter,et al.  Gravity-driven free surface flow of granular avalanches over complex basal topography , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[26]  Olivier Pouliquen,et al.  SCALING LAWS IN GRANULAR FLOWS DOWN ROUGH INCLINED PLANES , 1999 .

[27]  Herbert E. Huppert,et al.  Long-runout rockfalls , 1998 .

[28]  A. Mangeney,et al.  The shallow ice approximation for anisotropic ice : Formulation and limits , 1998 .

[29]  R. Iverson,et al.  U. S. Geological Survey , 1967, Radiocarbon.

[30]  M. Sheridan,et al.  Giant debris avalanches from the Colima Volcanic Complex, Mexico: Implications for long-runout landslides (>100 km) and hazard assessment , 1992 .

[31]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis , 1991 .

[32]  A. McEwen Mobility of large rock avalanches: Evidence from Valles Marineris, Mars , 1989 .

[33]  S. Savage,et al.  The motion of a finite mass of granular material down a rough incline , 1989, Journal of Fluid Mechanics.

[34]  L. Siebert,et al.  Volcanic hazards from Bezymianny- and Bandai-type eruptions , 1987 .

[35]  A. Daerr,et al.  On granular surface flow equations , 1999 .

[36]  Didier Müller,et al.  Techniques informatiques efficaces pour la simulation de milieux granulaires par des méthodes d'éléments distincts , 1996 .

[37]  S. Savage,et al.  The dynamics of avalanches of granular materials from initiation to runout. Part II. Experiments , 1995 .