d+id' chiral superconductivity in bilayer silicene.

We investigate the structure and physical properties of the undoped bilayer silicene through first-principles calculations and find the system is intrinsically metallic with sizable pocket Fermi surfaces. When realistic electron-electron interaction turns on, the system is identified as a chiral d+id' topological superconductor mediated by the strong spin fluctuation on the border of the antiferromagnetic spin density wave order. Moreover, the tunable Fermi pocket area via strain makes it possible to adjust the spin density wave critical interaction strength near the real one and enables a high superconducting critical temperature.

[1]  V. Cvetkovic,et al.  Electronic multicriticality in bilayer graphene , 2012, 1206.0288.

[2]  X. Qi,et al.  Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. , 2008, Physical review letters.

[3]  Hanna Enriquez,et al.  Epitaxial growth of a silicene sheet , 2010, 1204.0523.

[4]  Y. Maeno,et al.  The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing , 2003 .

[5]  These authors contributed equally to this work. , 2007 .

[6]  Sandeep Kumar Pathak,et al.  Possibility of High Tc Superconductivity in doped Graphene , 2008, 0809.0244.

[7]  A. Seitsonen,et al.  A review on silicene - New candidate for electronics , 2012 .

[8]  A. Black‐Schaffer Edge properties and Majorana fermions in the proposed chiral d-wave superconducting state of doped graphene. , 2012, Physical review letters.

[9]  G. Angilella,et al.  Pairing symmetry of superconducting graphene , 2010, 1006.4078.

[10]  François M. Peeters,et al.  From graphene to graphite : Electronic structure around the K point , 2006 .

[11]  T. Hotta,et al.  Strong-coupling theory of superconductivity in a degenerate Hubbard model , 2003, cond-mat/0309575.

[12]  Peng Cheng,et al.  Evidence of silicene in honeycomb structures of silicon on Ag(111). , 2012, Nano letters.

[13]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[14]  O. Vafek Interacting fermions on the honeycomb bilayer: From weak to strong coupling , 2010, 1008.1901.

[15]  Masuhiro Mikami,et al.  First-principles study of structural and electronic properties of ultrathin silicon nanosheets , 2010 .

[16]  Dapeng Yu,et al.  Tunable bandgap in silicene and germanene. , 2012, Nano letters.

[17]  V. Fal’ko,et al.  Electrically tunable band gap in silicene , 2011, 1112.4792.

[18]  Motohiko Ezawa,et al.  Valley-polarized metals and quantum anomalous Hall effect in silicene. , 2012, Physical review letters.

[19]  D. J. Scalapino,et al.  Near-degeneracy of several pairing channels in multiorbital models for the Fe pnictides , 2008, 0812.0343.

[20]  Cheng-Cheng Liu,et al.  Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin , 2011, 1108.2933.

[21]  J. González,et al.  Kohn-Luttinger superconductivity in graphene , 2008, 0807.3914.

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[24]  C. Beenakker,et al.  Domain wall in a chiral p-wave superconductor: a pathway for electrical current. , 2009, Physical review letters.

[25]  B. Uchoa,et al.  Superconducting states of pure and doped graphene. , 2007, Physical review letters.

[26]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  M. Tahir,et al.  Valley polarized quantum Hall effect and topological insulator phase transitions in silicene , 2012, Scientific Reports.

[29]  M. Ezawa Quasi-Topological Insulator and Trigonal Warping in Gated Bilayer Silicene , 2012, 1204.3971.

[30]  Vladimir I Fal'ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2006, Physical review letters.

[31]  Cheng-Cheng Liu,et al.  Evidence for Dirac fermions in a honeycomb lattice based on silicon. , 2012, Physical review letters.

[32]  Zhang,et al.  Quantum phase transitions in d-wave superconductors , 2000, Physical review letters.

[33]  Dung-Hai Lee,et al.  Functional renormalization group and variational Monte Carlo studies of the electronic instabilities in graphene near 1 4 doping , 2011, 1109.3884.

[34]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[35]  G. G. Guzmán-Verri,et al.  Electronic structure of silicon-based nanostructures , 2007, 1107.0075.

[36]  Kazuo Ueda,et al.  Phenomenological theory of unconventional superconductivity , 1991 .

[37]  Sebastian Doniach,et al.  Resonating Valence Bonds and Mean-Field d-Wave Superconductivity in Graphite , 2007 .

[38]  Sandeep Kumar Pathak,et al.  Possible high-temperature superconducting state with a d plus id pairing symmetry in doped graphene , 2010 .

[39]  Hiroyuki Kawai,et al.  Experimental evidence for epitaxial silicene on diboride thin films. , 2012, Physical review letters.

[40]  K. Yada,et al.  Origin of Weak Pseudogap Behaviors in Na0.35CoO2: Absence of Small Hole Pockets , 2005, cond-mat/0505747.

[41]  W. Hanke,et al.  Competing many-body instabilities and unconventional superconductivity in graphene , 2011, 1109.2953.

[42]  Patrick Vogt,et al.  Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. , 2012, Physical review letters.

[43]  Cheng-Cheng Liu,et al.  Quantum spin Hall effect in silicene and two-dimensional germanium. , 2011, Physical review letters.

[44]  S. Sarma,et al.  Stable topological superconductivity in a family of two-dimensional fermion models , 2009, 0908.2805.

[45]  G. Profeta,et al.  Phonon-mediated superconductivity in graphene by lithium deposition , 2012, Nature Physics.

[46]  Rahul Nandkishore,et al.  Chiral superconductivity from repulsive interactions in doped graphene , 2011, Nature Physics.

[47]  M. Ezawa A topological insulator and helical zero mode in silicene under an inhomogeneous electric field , 2012, 1201.3687.

[48]  M. Johannes,et al.  Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1-xFx. , 2008, Physical review letters.