Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival

[1]  M. Child,et al.  The host brain is permissive to colonization by Toxoplasma gondii , 2020 .

[2]  M. Child,et al.  Cellular barcoding of Toxoplasma reveals permissive host brain colonization , 2020 .

[3]  E. Gluenz,et al.  Bar-seq strategies for the LeishGEdit toolbox. , 2020, Molecular and biochemical parasitology.

[4]  Andreas C. Damianou,et al.  Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex , 2020, bioRxiv.

[5]  Andreas C. Damianou,et al.  Essential roles for deubiquitination in Leishmania life cycle progression , 2020, bioRxiv.

[6]  S. Young,et al.  Leishmania dual‐specificity tyrosine‐regulated kinase 1 (DYRK1) is required for sustaining Leishmania stationary phase phenotype , 2020, Molecular microbiology.

[7]  H. Gingras,et al.  Coupling chemical mutagenesis to next generation sequencing for the identification of drug resistance mutations in Leishmania , 2019, Nature Communications.

[8]  V. Sebastián-Pérez,et al.  Towards discovery of new leishmanicidal scaffolds able to inhibit Leishmania GSK-3 , 2019, Journal of enzyme inhibition and medicinal chemistry.

[9]  J. Rayner,et al.  Genome-Scale Identification of Essential Metabolic Processes for Targeting the Plasmodium Liver Stage , 2019, Cell.

[10]  K. Matthews,et al.  An atypical DYRK kinase connects quorum-sensing with posttranscriptional gene regulation in Trypanosoma brucei , 2019, bioRxiv.

[11]  R. Wheeler,et al.  Cellular landmarks of Trypanosoma brucei and Leishmania mexicana , 2019, Molecular and biochemical parasitology.

[12]  Ziyin Li,et al.  A kinetochore-based ATM/ATR-independent DNA damage checkpoint maintains genomic integrity in trypanosomes , 2019, Nucleic acids research.

[13]  Sarah L. Williams,et al.  Targeting the trypanosome kinetochore with CLK1 protein kinase inhibitors , 2019, bioRxiv.

[14]  Emanuel J. V. Gonçalves,et al.  Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens , 2019, Nature.

[15]  K. Thormann,et al.  Spatial arrangement of several flagellins within bacterial flagella improves motility in different environments , 2018, Nature Communications.

[16]  R. Wheeler,et al.  Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections , 2018, bioRxiv.

[17]  Michael D. Urbaniak,et al.  Cyclin-dependent kinase 12, a novel drug target for visceral leishmaniasis , 2018, Nature.

[18]  S. Kamhawi,et al.  Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity , 2018, Nature microbiology.

[19]  J. Mottram,et al.  Genetically Validated Drug Targets in Leishmania: Current Knowledge and Future Prospects , 2018, ACS infectious diseases.

[20]  E. Gluenz,et al.  Characterisation of Casein Kinase 1.1 in Leishmania donovani Using the CRISPR Cas9 Toolkit , 2017, BioMed research international.

[21]  Brent S. Pedersen,et al.  Mosdepth: quick coverage calculation for genomes and exomes , 2017, bioRxiv.

[22]  J. Mottram,et al.  RNAi screening identifies Trypanosoma brucei stress response protein kinases required for survival in the mouse , 2017, Scientific Reports.

[23]  K. Gull,et al.  Protein diversity in discrete structures at the distal tip of the trypanosome flagellum , 2017, Proceedings of the National Academy of Sciences.

[24]  J. Rayner,et al.  Functional Profiling of a Plasmodium Genome Reveals an Abundance of Essential Genes , 2017, Cell.

[25]  E. Gluenz,et al.  A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids , 2017, Royal Society Open Science.

[26]  R. Wheeler,et al.  TrypTag.org: A Trypanosome Genome-wide Protein Localisation Resource , 2017, Trends in parasitology.

[27]  Partha Palit,et al.  Leishmania donovani Aurora kinase: A promising therapeutic target against visceral leishmaniasis. , 2016, Biochimica et biophysica acta.

[28]  J. Mottram,et al.  Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in L eishmania mexicana cell cycle regulation , 2016, Molecular microbiology.

[29]  P. Myler,et al.  An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion , 2016, PLoS pathogens.

[30]  J. Lukeš,et al.  New Approaches to Systematics of Trypanosomatidae: Criteria for Taxonomic (Re)description. , 2015, Trends in parasitology.

[31]  P. Volf,et al.  Comparison of Bloodmeal Digestion and the Peritrophic Matrix in Four Sand Fly Species Differing in Susceptibility to Leishmania donovani , 2015, PloS one.

[32]  M. Wiese,et al.  Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability , 2014, PLoS pathogens.

[33]  N. Rachidi,et al.  Probing druggability and biological function of essential proteins in Leishmania combining facilitated null mutant and plasmid shuffle analyses , 2014, Molecular microbiology.

[34]  K. Gull,et al.  Discovery of Unconventional Kinetochores in Kinetoplastids , 2014, Cell.

[35]  Kristin E. Burnum-Johnson,et al.  Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani , 2014, PLoS pathogens.

[36]  N. Dickens,et al.  Regulators of Trypanosoma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen , 2014, PLoS pathogens.

[37]  L. Meijer,et al.  Pharmacological Assessment Defines Leishmania donovani Casein Kinase 1 as a Drug Target and Reveals Important Functions in Parasite Viability and Intracellular Infection , 2013, Antimicrobial Agents and Chemotherapy.

[38]  A. Ivens,et al.  Genome wide dissection of the quorum sensing signaling pathway in Trypanosoma brucei , 2013, Nature.

[39]  C. Jaffe,et al.  Identification of a Secreted Casein Kinase 1 in Leishmania donovani: Effect of Protein over Expression on Parasite Growth and Virulence , 2013, PloS one.

[40]  A. Schnittger,et al.  Cell cycle control across the eukaryotic kingdom. , 2013, Trends in cell biology.

[41]  M. Helmer-Citterich,et al.  Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. , 2013, Journal of proteome research.

[42]  Heng Li Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM , 2013, 1303.3997.

[43]  P. Volf,et al.  Leishmania development in sand flies: parasite-vector interactions overview , 2012, Parasites & Vectors.

[44]  Markus J. Tamás,et al.  Modulation of Leishmania major aquaglyceroporin activity by a mitogen‐activated protein kinase , 2012, Molecular microbiology.

[45]  G. H. Coombs,et al.  Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells , 2012, Cell Death and Disease.

[46]  A. Tobin,et al.  Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. , 2011, Nature communications.

[47]  G. H. Coombs,et al.  Morphological Events during the Cell Cycle of Leishmania major , 2011, Eukaryotic Cell.

[48]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[49]  P. Volf,et al.  Establishment and Maintenance of Sand Fly Colonies , 2011, Journal of vector ecology : journal of the Society for Vector Ecology.

[50]  K. Matthews Controlling and Coordinating Development in Vector-Transmitted Parasites , 2011, Science.

[51]  K. Gull,et al.  The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology , 2010, Molecular microbiology.

[52]  Alex Bateman,et al.  The Systematic Functional Analysis of Plasmodium Protein Kinases Identifies Essential Regulators of Mosquito Transmission , 2010, Cell host & microbe.

[53]  D. Depledge,et al.  Leishmania-Specific Surface Antigens Show Sub-Genus Sequence Variation and Immune Recognition , 2010, PLoS neglected tropical diseases.

[54]  S. Beverley,et al.  Expansion of the target of rapamycin (TOR) kinase family and function in Leishmania shows that TOR3 is required for acidocalcisome biogenesis and animal infectivity , 2010, Proceedings of the National Academy of Sciences.

[55]  P. Volf,et al.  Peritrophic matrix of Phlebotomus duboscqi and its kinetics during Leishmania major development , 2009, Cell and Tissue Research.

[56]  B. Porse,et al.  Bone Marrow-Derived Macrophages (BMM): Isolation and Applications. , 2008, CSH protocols.

[57]  Ching C. Wang,et al.  Tousled-like kinase in a microbial eukaryote regulates spindle assembly and S-phase progression by interacting with Aurora kinase and chromatin assembly factors , 2007, Journal of Cell Science.

[58]  M. Wiese Leishmania MAP kinases--familiar proteins in an unusual context. , 2007, International journal for parasitology.

[59]  M. Wiese,et al.  Interacting protein kinases involved in the regulation of flagellar length. , 2006, Molecular biology of the cell.

[60]  M. Wiese,et al.  LmxMPK4, a mitogen-activated protein (MAP) kinase homologue essential for promastigotes and amastigotes of Leishmania mexicana , 2005, Kinetoplastid biology and disease.

[61]  M. Parsons,et al.  Comparative analysis of the kinomes of three pathogenic trypanosomatids: Leishmania major, Trypanosoma brucei and Trypanosoma cruzi , 2005, BMC Genomics.

[62]  J. Engel,et al.  An essential, putative MEK kinase of Leishmania major. , 2005, Molecular and biochemical parasitology.

[63]  P. Myler,et al.  Ploidy changes associated with disruption of two adjacent genes on Leishmania major chromosome 1. , 2005, International journal for parasitology.

[64]  Daniel Kuhn,et al.  LmxPK4, a mitogen‐activated protein kinase kinase homologue of Leishmania mexicana with a potential role in parasite differentiation , 2005, Molecular microbiology.

[65]  Daniel Kuhn,et al.  LmxMPK9, a mitogen‐activated protein kinase homologue affects flagellar length in Leishmania mexicana , 2005, Molecular microbiology.

[66]  Pauline Ward,et al.  Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote , 2004, BMC Genomics.

[67]  P. Volf,et al.  Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models. , 2004, International journal for parasitology.

[68]  Daniel Kuhn,et al.  Protein Kinase Involved in Flagellar-Length Control , 2003, Eukaryotic Cell.

[69]  Wojtek J. Krzanowski,et al.  Projection Pursuit Clustering for Exploratory Data Analysis , 2003 .

[70]  A. Fairlamb,et al.  A new expression vector for Crithidia fasciculata and Leishmania. , 2002, Molecular and biochemical parasitology.

[71]  S. Beverley,et al.  A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation. , 2001, Experimental parasitology.

[72]  J. Mottram,et al.  The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. , 2001, Molecular and biochemical parasitology.

[73]  M. Wiese A mitogen‐activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host , 1998, The EMBO journal.

[74]  J. Mottram,et al.  Gene disruptions indicate an essential function for the LmmCRK1 cdc2‐related kinase of Leishmania mexicana , 1996, Molecular microbiology.

[75]  LAUREL L. Walters,et al.  Leishmania Differentiation in Natural and Unnatural Sand Fly Hosts 1 , 1993, The Journal of eukaryotic microbiology.

[76]  T. Roberts,et al.  The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[77]  S. Beverley,et al.  Double targeted gene replacement for creating null mutants. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[78]  D. Alessi,et al.  The nuts and bolts of AGC protein kinases , 2010, Nature Reviews Molecular Cell Biology.