Convexity and Smoothness of Scale Functions and de Finetti’s Control Problem

We continue the recent work of Avram et al. (Ann. Appl. Probab. 17:156–180, 2007) and Loeffen (Ann. Appl. Probab., 2007) by showing that whenever the Lévy measure of a spectrally negative Lévy process has a density which is log-convex then the solution of the associated actuarial control problem of de Finetti is solved by a barrier strategy. Moreover, the level of the barrier can be identified in terms of the scale function of the underlying Lévy process. Our method appeals directly to very recent developments in the theory of potential analysis of subordinators and their application to convexity and smoothness properties of the relevant scale functions.

[1]  Hans-Ulrich Gerber,et al.  Entscheidungskriterien für den zusammengesetzten Poisson-Prozess , 1969 .

[2]  G. Gripenberg On positive, nonincreasing resolvents of Volterra equations , 1978 .

[3]  Gustaf Gripenberg,et al.  On volterra equations of the first kind , 1980 .

[4]  L. Rogers A new identity for real Lévy processes , 1984 .

[5]  L. Shepp,et al.  The set of real numbers left uncovered by random covering intervals , 1985 .

[6]  P. Protter Stochastic integration and differential equations , 1990 .

[7]  Jia-An Yan,et al.  Semimartingale Theory and Stochastic Calculus , 1992 .

[8]  Jean Bertoin,et al.  Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval , 1997 .

[9]  Hansjörg Furrer,et al.  Risk processes perturbed by α-stable Lévy motion , 1998 .

[10]  R. Wolpert Lévy Processes , 2000 .

[11]  Right inverses of non-symmetric Lévy processes , 2000 .

[12]  Right Inverses of Nonsymmetric Lévy Processes , 2002 .

[13]  Claudia Kluppelberg,et al.  Ruin probabilities and overshoots for general Lévy insurance risk processes , 2004 .

[14]  Miljenko Huzak,et al.  Ruin probabilities and decompositions for general perturbed risk processes , 2004, math/0407125.

[15]  Florin Avram,et al.  Exit problems for spectrally negative Levy processes and applications to (Canadized) Russian options , 2004 .

[16]  Miljenko Huzak,et al.  Ruin probabilities for competing claim processes , 2004, Journal of Applied Probability.

[17]  P. Azcue,et al.  OPTIMAL REINSURANCE AND DIVIDEND DISTRIBUTION POLICIES IN THE CRAMÉR‐LUNDBERG MODEL , 2005 .

[18]  R. Doney,et al.  Some Excursion Calculations for Spectrally One-sided Lévy Processes , 2005 .

[19]  A. Kyprianou Introductory Lectures on Fluctuations of Lévy Processes with Applications , 2006 .

[20]  A. E. Kyprianou,et al.  Overshoots and undershoots of Lèvy processes , 2006 .

[21]  R. Song,et al.  Potential Theory of Special Subordinators and Subordinate Killed Stable Processes , 2006 .

[22]  On extreme ruinous behaviour of Lévy insurance risk processes , 2006, Journal of Applied Probability.

[23]  Xiaowen Zhou,et al.  Distribution of the Present Value of Dividend Payments in a Lévy Risk Model , 2007, Journal of Applied Probability.

[24]  Florin Avram,et al.  On the optimal dividend problem for a spectrally negative Lévy process , 2007, math/0702893.

[25]  A. Kyprianou,et al.  Special, conjugate and complete scale functions for spectrally negative Lévy processes , 2007, 0712.3588.

[26]  R. Doney,et al.  Fluctuation Theory for Lévy Processes , 2007 .

[27]  Z. Palmowski,et al.  Tail Asymptotics of the Supremum of a Regenerative Process , 2007, Journal of Applied Probability.

[28]  Z. Palmowski,et al.  Distributional Study of De Finetti's Dividend Problem for a General Lévy Insurance Risk Process , 2007, Journal of Applied Probability.

[29]  R. Loeffen,et al.  On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes , 2008, 0811.1862.

[30]  On suprema of Lévy processes and application in risk theory , 2008 .

[31]  Mladen Savov,et al.  Smoothness of scale functions for spectrally negative Lévy processes , 2009, 0903.1467.

[32]  R. Song,et al.  Some Remarks on Special Subordinators , 2010 .