Network Structure Change Point Detection by Posterior Predictive Discrepancy

Detecting changes in network structure is important for research into systems as diverse as financial trading networks, social networks and brain connectivity. Here we present novel Bayesian methods for detecting network structure change points. We use the stochastic block model to quantify the likelihood of a network structure and develop a score we call posterior predictive discrepancy based on sliding windows to evaluate the model fitness to the data. The parameter space for this model includes unknown latent label vectors assigning network nodes to interacting communities. Monte Carlo techniques based on Gibbs sampling are used to efficiently sample the posterior distributions over this parameter space.

[1]  Jiashun Jin,et al.  FAST COMMUNITY DETECTION BY SCORE , 2012, 1211.5803.

[2]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[3]  Christoforos Anagnostopoulos,et al.  Estimating time-varying brain connectivity networks from functional MRI time series , 2013, NeuroImage.

[4]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[5]  Franck Picard,et al.  A mixture model for random graphs , 2008, Stat. Comput..

[6]  A. Munk,et al.  Multiscale change point inference , 2013, 1301.7212.

[7]  Simon De Ridder,et al.  Detection and localization of change points in temporal networks with the aid of stochastic block models , 2016, ArXiv.

[8]  Agostino Nobile,et al.  Bayesian finite mixtures with an unknown number of components: The allocation sampler , 2007, Stat. Comput..

[9]  Jalal Kawash,et al.  Prediction and Inference from Social Networks and Social Media , 2017, Lecture Notes in Social Networks.

[10]  Yi Yu,et al.  Estimating whole‐brain dynamics by using spectral clustering , 2015, 1509.03730.

[11]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[12]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[13]  P. Bickel,et al.  Likelihood-based model selection for stochastic block models , 2015, 1502.02069.

[14]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Piotr Fryzlewicz,et al.  Multiple‐change‐point detection for high dimensional time series via sparsified binary segmentation , 2015, 1611.08639.

[16]  G. Kitagawa,et al.  Information Criteria and Statistical Modeling , 2007 .

[17]  P. Good,et al.  Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses , 1995 .

[18]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[19]  Catie Chang,et al.  Time–frequency dynamics of resting-state brain connectivity measured with fMRI , 2010, NeuroImage.

[20]  M. West Bayesian Model Monitoring , 1986 .

[21]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[22]  Hernando Ombao,et al.  FreSpeD: Frequency-Specific Change-Point Detection in Epileptic Seizure Multi-Channel EEG Data , 2018, Journal of the American Statistical Association.

[23]  Chongwon Pae,et al.  Connectivity-based change point detection for large-size functional networks , 2016, NeuroImage.

[24]  Tengyao Wang,et al.  High dimensional change point estimation via sparse projection , 2016, 1606.06246.

[25]  Neil J. Hurley,et al.  Computational Statistics and Data Analysis , 2022 .

[26]  Martin A. Lindquist,et al.  Dynamic connectivity regression: Determining state-related changes in brain connectivity , 2012, NeuroImage.

[27]  Mason A. Porter,et al.  Robust Detection of Dynamic Community Structure in Networks , 2012, Chaos.

[28]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[29]  Nial Friel,et al.  Block clustering with collapsed latent block models , 2010, Statistics and Computing.

[30]  Christophe Ambroise,et al.  Fast online graph clustering via Erdös-Rényi mixture , 2008, Pattern Recognit..

[31]  Christophe Ambroise,et al.  Variational Bayesian inference and complexity control for stochastic block models , 2009, 0912.2873.

[32]  Martin A. Lindquist,et al.  Detecting functional connectivity change points for single-subject fMRI data , 2013, Front. Comput. Neurosci..

[33]  Daniel A. Handwerker,et al.  Periodic changes in fMRI connectivity , 2012, NeuroImage.