Preliminary test and Stein estimations in simultaneous linear equations
暂无分享,去创建一个
[1] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[2] B. M. Kibria,et al. Simultaneous Estimation of Regression Parameters With Spherically Symmetric Errors Under Possible Stochastic Constraints , 2004 .
[3] Shahjahan Khan. Shrinkage Estimators of Intercept Parameters of Two Simple Regression Models with Suspected Equal Slopes , 2008 .
[4] Shahjahan Khan. Improved estimation of the mean vector for student-t model , 2000 .
[5] Arnold Zellner,et al. Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions , 1994 .
[6] T. A. Bancroft,et al. On Pooling Means when Variance is Unknown , 1968 .
[7] K. Chu. Estimation and decision for linear systems with elliptical random processes , 1972, CDC 1972.
[8] A. Zellner. Estimators for Seemingly Unrelated Regression Equations: Some Exact Finite Sample Results , 1963 .
[9] B. M. Golam Kibria,et al. ESTIMATION STRATEGIES FOR PARAMETERS OF THE LINEAR REGRESSION MODELS WITH SPHERICALLY SYMMETRIC DISTRIBUTIONS , 2004 .
[10] Shahjahan Khan,et al. Shrinkage estimation of the slope parameters of two parallel regression lines under uncertain prior information , 2006, Model. Assist. Stat. Appl..
[11] A. K. Md. Ehsanes Saleh,et al. Theory of preliminary test and Stein-type estimation with applications , 2006 .
[12] A. K. Md. Ehsanes Saleh,et al. Shrinkage Pre‐Test Estimator of the Intercept Parameter for a Regression Model with Multivariate Student‐t Errors , 1997 .
[13] Pranab Kumar Sen,et al. Nonparametric Estimation of Location Parameter After a Preliminary Test on Regression , 1978 .
[14] T. A. Bancroft,et al. On Biases in Estimation Due to the Use of Preliminary Tests of Significance , 1944 .
[15] G. Simons,et al. On the theory of elliptically contoured distributions , 1981 .
[16] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[17] T. A. Bancroft,et al. ANALYSIS AND INFERENCE FOR INCOMPLETELY SPECIFIED MODELS INVOLVING THE USE OF PRELIMINARY TEST(S) OF SIGNIFICANCE , 1964 .
[18] Muni S. Srivastava,et al. Stein estimation under elliptical distributions , 1989 .
[19] Narayanaswamy Balakrishnan,et al. The Linear Discriminant Function: Sampling from the Truncated Normal Distribution , 1987 .
[20] É. Marchand,et al. On estimation with weighted balanced-type loss function , 2006 .
[21] A. Goldberger,et al. On Pure and Mixed Statistical Estimation in Economics , 1961 .
[22] A. Saleh,et al. Estimation of Slope for Linear Regression Model with Uncertain Prior Information and Student-t Error , 2008 .
[23] A. K. Md. Ehsanes Saleh,et al. Estimation of the mean vector of a multivariate normal distribution: subspace hypothesis , 2005 .
[24] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[25] K. Fang,et al. Generalized Multivariate Analysis , 1990 .
[26] Kai-Tai Fang,et al. Maximum‐likelihood estimates and likelihood‐ratio criteria for multivariate elliptically contoured distributions , 1986 .
[27] Arjun K. Gupta,et al. Elliptically contoured models in statistics , 1993 .