Preliminary test and Stein estimations in simultaneous linear equations

Abstract In modeling of an economic system, there may occur some stochastic constraints, that can cause some changes in the estimators and their respective behaviors. In this approach we formulate the simultaneous equation models into the problem of estimating the regression parameters of a multiple regression model, under elliptical errors. We define five different sorts of estimators for the vector-parameter. Their exact risk expressions are also derived under the balanced loss function. Comparisons are then made to clarify the performance of the proposed estimators. It is shown that the shrinkage factor of the Stein estimator is robust with respect to departures from normality assumption.

[1]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[2]  B. M. Kibria,et al.  Simultaneous Estimation of Regression Parameters With Spherically Symmetric Errors Under Possible Stochastic Constraints , 2004 .

[3]  Shahjahan Khan Shrinkage Estimators of Intercept Parameters of Two Simple Regression Models with Suspected Equal Slopes , 2008 .

[4]  Shahjahan Khan Improved estimation of the mean vector for student-t model , 2000 .

[5]  Arnold Zellner,et al.  Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions , 1994 .

[6]  T. A. Bancroft,et al.  On Pooling Means when Variance is Unknown , 1968 .

[7]  K. Chu Estimation and decision for linear systems with elliptical random processes , 1972, CDC 1972.

[8]  A. Zellner Estimators for Seemingly Unrelated Regression Equations: Some Exact Finite Sample Results , 1963 .

[9]  B. M. Golam Kibria,et al.  ESTIMATION STRATEGIES FOR PARAMETERS OF THE LINEAR REGRESSION MODELS WITH SPHERICALLY SYMMETRIC DISTRIBUTIONS , 2004 .

[10]  Shahjahan Khan,et al.  Shrinkage estimation of the slope parameters of two parallel regression lines under uncertain prior information , 2006, Model. Assist. Stat. Appl..

[11]  A. K. Md. Ehsanes Saleh,et al.  Theory of preliminary test and Stein-type estimation with applications , 2006 .

[12]  A. K. Md. Ehsanes Saleh,et al.  Shrinkage Pre‐Test Estimator of the Intercept Parameter for a Regression Model with Multivariate Student‐t Errors , 1997 .

[13]  Pranab Kumar Sen,et al.  Nonparametric Estimation of Location Parameter After a Preliminary Test on Regression , 1978 .

[14]  T. A. Bancroft,et al.  On Biases in Estimation Due to the Use of Preliminary Tests of Significance , 1944 .

[15]  G. Simons,et al.  On the theory of elliptically contoured distributions , 1981 .

[16]  R. Muirhead Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.

[17]  T. A. Bancroft,et al.  ANALYSIS AND INFERENCE FOR INCOMPLETELY SPECIFIED MODELS INVOLVING THE USE OF PRELIMINARY TEST(S) OF SIGNIFICANCE , 1964 .

[18]  Muni S. Srivastava,et al.  Stein estimation under elliptical distributions , 1989 .

[19]  Narayanaswamy Balakrishnan,et al.  The Linear Discriminant Function: Sampling from the Truncated Normal Distribution , 1987 .

[20]  É. Marchand,et al.  On estimation with weighted balanced-type loss function , 2006 .

[21]  A. Goldberger,et al.  On Pure and Mixed Statistical Estimation in Economics , 1961 .

[22]  A. Saleh,et al.  Estimation of Slope for Linear Regression Model with Uncertain Prior Information and Student-t Error , 2008 .

[23]  A. K. Md. Ehsanes Saleh,et al.  Estimation of the mean vector of a multivariate normal distribution: subspace hypothesis , 2005 .

[24]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[25]  K. Fang,et al.  Generalized Multivariate Analysis , 1990 .

[26]  Kai-Tai Fang,et al.  Maximum‐likelihood estimates and likelihood‐ratio criteria for multivariate elliptically contoured distributions , 1986 .

[27]  Arjun K. Gupta,et al.  Elliptically contoured models in statistics , 1993 .