A Database for Field Extensions of the Rationals
暂无分享,去创建一个
[1] Michael Pohst,et al. On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields , 1982 .
[2] F. Diaz. Valeurs minima du discriminant pour certains types de corps de degré 7 , 1984 .
[3] Moshe Jarden,et al. The absolute Galois group of a pseudo real closed field , 1985 .
[4] F. Diaz y Diaz,et al. Petits discriminants des corps de nombres totalement imaginaires de degré 8 , 1987 .
[5] F. Diaz. Discriminant Minimal Et Petits Discriminants Des Corps De Nombres De Degre 7 Avec Cinq Places Reelles , 1988 .
[6] Jacques Martinet,et al. The computation of sextic fields with a quadratic subfield , 1990 .
[7] Michel Olivier,et al. Corps sextiques primitifs , 1990 .
[8] Michael Pohst,et al. The minimum discriminant of totally real octic fields , 1990 .
[9] W. Narkiewicz. Elementary and Analytic Theory of Algebraic Numbers , 1990 .
[10] S. Böge. Witt-Invariante und ein gewisses Einbettungsproblem. , 1990 .
[11] Michel Olivier. Corps sextiques primitifs (IV) , 1991 .
[12] B. M. Fulk. MATH , 1992 .
[13] Jean-Pierre Serre,et al. Topics in Galois Theory , 1992 .
[14] M. Olivier,et al. The computation of sextic fields with a cubic subfield and no quadratic subfield , 1992 .
[15] Michael E. Pohst,et al. The Totally Real A5 Extension of Degree 6 with Minimum Discriminant , 1992, Exp. Math..
[16] Michael E. Pohst,et al. The Totally Real A6 Extension of Degree 6 with Minimum Discriminant , 1993, Exp. Math..
[17] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[18] Johannes Buchmann,et al. Enumeration of quartic fields of small discriminant , 1993 .
[19] A. Schwarz,et al. A table of quintic number fields , 1994 .
[20] S. Beckmann. Is Every Extension of Q the Specialization of a Branched Covering , 1994 .
[21] M. Olivier,et al. Imprimitive ninth-degree number fields with small discriminants , 1995 .
[22] Rajeev Motwani,et al. Randomized Algorithms: Number Theory and Algebra , 1995 .
[23] Claus Fieker,et al. Kant V4 , 1997, J. Symb. Comput..
[24] Karim Belabas,et al. A fast algorithm to compute cubic fields , 1997, Math. Comput..
[25] Michael E. Pohst,et al. The S5 Extensions of Degree 6 with Minimum Discriminant , 1998, Experimental Mathematics.
[26] Henri Cohen,et al. Tables of octic fields with a quartic subfield , 1999, Mathematics of Computation.
[27] Vincenzo Acciaro,et al. Computing Local Artin Maps, and Solvability of Norm Equations , 2000, J. Symb. Comput..
[28] Henri Cohen,et al. Advanced topics in computational number theory , 2000 .
[29] Gunter Malle,et al. Explicit Galois Realization of Transitive Groups of Degree up to 15 , 2000, J. Symb. Comput..
[30] Helmut Koch,et al. Number theory : algebraic numbers and functions , 2000 .
[31] Gunter Malle,et al. Multi-parameter Polynomials with Given Galois Group , 2000, J. Symb. Comput..
[32] Claus Fieker,et al. Computing class fields via the Artin map , 2001, Math. Comput..
[33] Gunter Malle,et al. Inverse Galois Theory , 2002 .
[34] Jürgen Klüners,et al. Minimal discriminants for fields with small Frobenius groups as Galois groups , 2003 .
[35] A. ADoefaa,et al. ? ? ? ? f ? ? ? ? ? , 2003 .