A Database for Field Extensions of the Rationals

We report on a database of field extensions of the rationals, its properties and the methods used to compute it. At the moment the database encompasses roughly 100,000 polynomials generating distinct number fields over the rationals, of degrees up to 15. It contains polynomials for all transitive permutation groups up to that degree, and even for most of the possible combinations of signature and Galois group in that range. Moreover, whenever these are known, the fields of minimal discriminant with given group and signature have been included. The database can be downloaded from this http URL or from this http URL~malle/minimum/minimum.html and accessed via the computer algebra system Kant. One of the aims of the compilation of this database was to test the limitations of current methods for the realization of groups as Galois groups. It turned out that these methods have limitations if the signature of the resulting Galois extension is also prescribed.

[1]  Michael Pohst,et al.  On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields , 1982 .

[2]  F. Diaz Valeurs minima du discriminant pour certains types de corps de degré 7 , 1984 .

[3]  Moshe Jarden,et al.  The absolute Galois group of a pseudo real closed field , 1985 .

[4]  F. Diaz y Diaz,et al.  Petits discriminants des corps de nombres totalement imaginaires de degré 8 , 1987 .

[5]  F. Diaz Discriminant Minimal Et Petits Discriminants Des Corps De Nombres De Degre 7 Avec Cinq Places Reelles , 1988 .

[6]  Jacques Martinet,et al.  The computation of sextic fields with a quadratic subfield , 1990 .

[7]  Michel Olivier,et al.  Corps sextiques primitifs , 1990 .

[8]  Michael Pohst,et al.  The minimum discriminant of totally real octic fields , 1990 .

[9]  W. Narkiewicz Elementary and Analytic Theory of Algebraic Numbers , 1990 .

[10]  S. Böge Witt-Invariante und ein gewisses Einbettungsproblem. , 1990 .

[11]  Michel Olivier Corps sextiques primitifs (IV) , 1991 .

[12]  B. M. Fulk MATH , 1992 .

[13]  Jean-Pierre Serre,et al.  Topics in Galois Theory , 1992 .

[14]  M. Olivier,et al.  The computation of sextic fields with a cubic subfield and no quadratic subfield , 1992 .

[15]  Michael E. Pohst,et al.  The Totally Real A5 Extension of Degree 6 with Minimum Discriminant , 1992, Exp. Math..

[16]  Michael E. Pohst,et al.  The Totally Real A6 Extension of Degree 6 with Minimum Discriminant , 1993, Exp. Math..

[17]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[18]  Johannes Buchmann,et al.  Enumeration of quartic fields of small discriminant , 1993 .

[19]  A. Schwarz,et al.  A table of quintic number fields , 1994 .

[20]  S. Beckmann Is Every Extension of Q the Specialization of a Branched Covering , 1994 .

[21]  M. Olivier,et al.  Imprimitive ninth-degree number fields with small discriminants , 1995 .

[22]  Rajeev Motwani,et al.  Randomized Algorithms: Number Theory and Algebra , 1995 .

[23]  Claus Fieker,et al.  Kant V4 , 1997, J. Symb. Comput..

[24]  Karim Belabas,et al.  A fast algorithm to compute cubic fields , 1997, Math. Comput..

[25]  Michael E. Pohst,et al.  The S5 Extensions of Degree 6 with Minimum Discriminant , 1998, Experimental Mathematics.

[26]  Henri Cohen,et al.  Tables of octic fields with a quartic subfield , 1999, Mathematics of Computation.

[27]  Vincenzo Acciaro,et al.  Computing Local Artin Maps, and Solvability of Norm Equations , 2000, J. Symb. Comput..

[28]  Henri Cohen,et al.  Advanced topics in computational number theory , 2000 .

[29]  Gunter Malle,et al.  Explicit Galois Realization of Transitive Groups of Degree up to 15 , 2000, J. Symb. Comput..

[30]  Helmut Koch,et al.  Number theory : algebraic numbers and functions , 2000 .

[31]  Gunter Malle,et al.  Multi-parameter Polynomials with Given Galois Group , 2000, J. Symb. Comput..

[32]  Claus Fieker,et al.  Computing class fields via the Artin map , 2001, Math. Comput..

[33]  Gunter Malle,et al.  Inverse Galois Theory , 2002 .

[34]  Jürgen Klüners,et al.  Minimal discriminants for fields with small Frobenius groups as Galois groups , 2003 .

[35]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .