Fermi-surface truncation from thermal nematic fluctuations.

We analyze how thermal fluctuations near a finite temperature nematic phase transition affect the spectral function A(k,ω) for single-electron excitations in a two-dimensional metal. Perturbation theory yields a splitting of the quasiparticle peak with a d-wave form factor, reminiscent of a pseudogap. We present a resummation of contributions to all orders in the Gaussian fluctuation regime. Instead of a splitting, the resulting spectral function exhibits a pronounced broadening of the quasiparticle peak, which varies strongly around the Fermi surface and vanishes upon approaching the Brillouin-zone diagonal. The Fermi surface obtained from a Brillouin-zone plot of A(k,0) seems truncated to Fermi arcs.