A Note on Estimation of a Distribution Function in a Nonparametric Set-up Using Stein’s Shrinkage Estimation Technique
暂无分享,去创建一个
[1] H. Hudson. A Natural Identity for Exponential Families with Applications in Multiparameter Estimation , 1978 .
[2] Gerald S. Rogers,et al. Mathematical Statistics: A Decision Theoretic Approach , 1967 .
[3] Nabendu Pal,et al. A sequence of improvements over the James-Stein estimator , 1992 .
[4] Jiunn Tzon Hwang,et al. Improving Upon Standard Estimators in Discrete Exponential Families with Applications to Poisson and Negative Binomial Cases , 1982 .
[5] E. Phadia,et al. Best Invariant Estimation of a Distribution Function under the Kolmogorov-Smirnov Loss Function , 1988 .
[6] Tatsuya Kubokawa. An approach to improving the James-Stein estimator , 1991 .
[7] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[8] A. Baranchik,et al. A Family of Minimax Estimators of the Mean of a Multivariate Normal Distribution , 1970 .
[9] Qiqing Yu,et al. Minimaxity of the Empirical Distribution Function in Invariant Estimation , 1991 .
[10] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[11] J. Neyman,et al. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .
[12] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .