Intraocular retinal prosthesis

Retinal prostheses have the potential to restore some level of visual function to blind individuals. While visual prosthetic devices for the optic nerve and visual cortex also have potential application, the retinal approach offers the advantage of relatively accessible retinal neurons in the back of the eye. Biological studies have demonstrated biocompatibility of implantation and stimulation and have investigated retinal response to stimulation. Recent clinical trials have shown that a prototype epiretinal implant, despite having few electrodes contacting the retina, still allows test subjects to perform simple visual tasks. Ongoing engineering research is focusing on the fabrication of a high-resolution implant

[1]  H. Curtis,et al.  ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY , 1939, The Journal of general physiology.

[2]  W. Penfield The Cerebral Cortex of Man , 1950 .

[3]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[4]  A. Hodgkin,et al.  Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo , 1952, The Journal of physiology.

[5]  H. Jasper,et al.  Epilepsy and the functional anatomy of the human brain , 1985 .

[6]  W W GLENN,et al.  Remote stimulation of the heart by radiofrequency transmission. Clinical application to a patient with Stokes-Adams syndrome. , 1959, The New England journal of medicine.

[7]  L. Scheinberg,et al.  Is the brain an "immunologically privileged site"? 2. Studies in induced host resistance to transplantable mouse glioma following irradiation of prior implants. , 1965, Archives of neurology.

[8]  G. Brindley,et al.  The sensations produced by electrical stimulation of the visual cortex , 1968, The Journal of physiology.

[9]  A. M. Potts,et al.  The electrically evoked response of the visual system (EER). , 1968, Investigative Ophthalmology.

[10]  A. M. Potts,et al.  The electrically evoked response (EER) of the visual system. II. Effect of adaptation and retinitis pigmentosa. , 1969, Investigative ophthalmology.

[11]  K. Wise,et al.  An integrated-circuit approach to extracellular microelectrodes. , 1970, IEEE transactions on bio-medical engineering.

[12]  A. M. Potts,et al.  The electrically evoked response of the visual system (EER). 3. Further contribution to the origin of the EER. , 1970, Investigative ophthalmology.

[13]  S. Uematsu,et al.  Electrical stimulation of the cerebral visual system in man. , 1974, Confinia neurologica.

[14]  W. Dobelle,et al.  Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind , 1974, The Journal of physiology.

[15]  R W Knighton An electrically evoked slow potential of the frog's retina. II. Identification with PII component of electroretinogram. , 1975, Journal of neurophysiology.

[16]  Knighton Rw An electrically evoked slow potential of the frog's retina. II. Identification with PII component of electroretinogram. , 1975 .

[17]  S. B. Brummer,et al.  Electrical stimulation of the nervous system: The principle of safe charge injection with noble metal electrodes , 1975 .

[18]  L A Bullara,et al.  Electrical stimulation of the brain. II. Effects on the blood-brain barrier. , 1975, Surgical neurology.

[19]  H Karny,et al.  Clinical and physiological aspects of the cortical visual prosthesis. , 1975, Survey of ophthalmology.

[20]  J. B. Ranck,et al.  Which elements are excited in electrical stimulation of mammalian central nervous system: A review , 1975, Brain Research.

[21]  R. Knighton,et al.  An electrically evoked slow potential of the frog's retina. I. Properties of response. , 1975, Journal of neurophysiology.

[22]  L. Bullara,et al.  Electrical stimulation of the brain. I. Electrodes and electrode arrays. , 1975, Surgical neurology.

[23]  L A Bullara,et al.  Electrical stimulation of the brain. III. The neural damage model. , 1975, Surgical neurology.

[24]  Knighton Rw,et al.  An electrically evoked slow potential of the frog's retina. I. Properties of response. , 1975 .

[25]  M. Mladejovsky,et al.  ‘Braille’ reading by a blind volunteer by visual cortex stimulation , 1976, Nature.

[26]  W W Dawson,et al.  The electrical stimulation of the retina by indwelling electrodes. , 1977, Investigative ophthalmology & visual science.

[27]  D A Pollen,et al.  Responses of single neurons to electrical stimulation of the surface of the visual cortex. , 1977, Brain, behavior and evolution.

[28]  T L Babb,et al.  Tissue reactions to long-term electrical stimulation of the cerebellum in monkeys. , 1977, Journal of neurosurgery.

[29]  C. Ledergerber Postoperative electroanalgesia. , 1978, Obstetrics and gynecology.

[30]  W. Dobelle,et al.  The relationship between stimulus parameters and phosphene threshold/brightness, during stimulation of human visual cortex. , 1979, Transactions - American Society for Artificial Internal Organs.

[31]  I Abramov,et al.  Brightness of phosphenes elicited by electrical stimulation of human visual cortex. , 1979, Sensory processes.

[32]  W. Dobelle,et al.  Electrical stimulation of human visual cortex: the effect of stimulus parameters on phosphene threshold. , 1979, Sensory processes.

[33]  J M Marston,et al.  Electrical stimulation with Pt electrodes. V. The effect of protein on Pt dissolution. , 1980, Biomaterials.

[34]  R. Doty,et al.  An exploration of the ability of macaques to detect microstimulation of striate cortex. , 1980, Acta neurobiologiae experimentalis.

[35]  J M Marston,et al.  Electrical stimulation with pt electrodes. IV. Factors influencing Pt dissolution in inorganic saline. , 1980, Biomaterials.

[36]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[37]  S. Marshall,et al.  Electromagnetic concepts and applications , 1982 .

[38]  J. G. Webster,et al.  Analysis and Control of the Current Distribution under Circular Dispersive Electrodes , 1982, IEEE Transactions on Biomedical Engineering.

[39]  Sato Shuzo,et al.  A procedure for recording electroretinogram and visual evoked potential in conscious dogs. , 1982 .

[40]  S. Chiba,et al.  A procedure for recording electroretinogram and visual evoked potential in conscious dogs. , 1982, Journal of pharmacological methods.

[41]  R. Simmons,et al.  Infections in bionic man: the pathobiology of infections in prosthetic devices-Part II. , 1982, Current problems in surgery.

[42]  John A. Brabyn,et al.  New Developments in Mobility and Orientation Aids for the Blind , 1982, IEEE Transactions on Biomedical Engineering.

[43]  F. Hambrecht,et al.  CRITERIA FOR SELECTING ELECTRODES FOR ELECTRICAL STIMULATION: THEORETICAL AND PRACTICAL CONSIDERATIONS , 1983, Annals of the New York Academy of Sciences.

[44]  D. McCreery,et al.  A microelectrode for delivery of defined charge densities , 1983, Journal of Neuroscience Methods.

[45]  H Bostock,et al.  The strength‐duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. , 1983, The Journal of physiology.

[46]  J. Mortimer,et al.  The Effect of Stimulus Parameters on the Recruitment Characteristics of Direct Nerve Stimulation , 1983, IEEE Transactions on Biomedical Engineering.

[47]  D. C. West,et al.  Strength‐duration characteristics of myelinated and non‐myelinated bulbospinal axons in the cat spinal cord. , 1983, The Journal of physiology.

[48]  G. Zeilmaker,et al.  Development and degeneration of retina in rds mutant mice: light and electron microscopic observations in experimental chimaeras. , 1984, Experimental eye research.

[49]  J Toyoda,et al.  Application of transretinal current stimulation for the study of bipolar-amacrine transmission , 1984, The Journal of general physiology.

[50]  Lois S. Robblee,et al.  Charge Injection Properties of Thermally-Prepared Iridium Oxide Films , 1985 .

[51]  L. S. Robblee,et al.  Assessment of capacitor electrodes for intracortical neural stimulation , 1985, Journal of Neuroscience Methods.

[52]  David J. Anderson,et al.  Solid-State Electrodes for Multichannel Multiplexed Intracortical Neuronal Recording , 1986, IEEE Transactions on Biomedical Engineering.

[53]  D. McCreery,et al.  Neuronal activity evoked by chronically implanted intracortical microelectrodes , 1986, Experimental Neurology.

[54]  D. McCreery,et al.  Histopathologic evaluation of prolonged intracortical electrical stimulation , 1986, Experimental Neurology.

[55]  Jay T. Rubinstein,et al.  Current Density Profiles of Surface Mounted and Recessed Electrodes for Neural Prostheses , 1987, IEEE Transactions on Biomedical Engineering.

[56]  J. Dowling The Retina: An Approachable Part of the Brain , 1988 .

[57]  M. Cerro,et al.  Retinal transplants into the anterior chamber of the rat eye , 1987, Neuroscience.

[58]  P.H. Peckham,et al.  A flexible, portable system for neuromuscular stimulation in the paralyzed upper extremity , 1988, IEEE Transactions on Biomedical Engineering.

[59]  X. Beebe,et al.  Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline (neurological stimulation application) , 1988, IEEE Transactions on Biomedical Engineering.

[60]  W.J. Heetderks,et al.  RF powering of millimeter- and submillimeter-sized neural prosthetic implants , 1988, IEEE Transactions on Biomedical Engineering.

[61]  D.J. Anderson,et al.  Batch fabricated thin-film electrodes for stimulation of the central auditory system , 1989, IEEE Transactions on Biomedical Engineering.

[62]  J. Hetke,et al.  Strength characterization of silicon microprobes in neurophysiological tissues , 1990, IEEE Transactions on Biomedical Engineering.

[63]  T.L. Rose,et al.  Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application) , 1990, IEEE Transactions on Biomedical Engineering.

[64]  D.B. McCreery,et al.  Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation , 1990, IEEE Transactions on Biomedical Engineering.

[65]  K D Wise,et al.  Microfabrication techniques for integrated sensors and microsystems. , 1991, Science.

[66]  K W Horch,et al.  Reading speed with a pixelized vision system. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[67]  G. Kovacs,et al.  Regeneration microelectrode array for peripheral nerve recording and stimulation , 1992, IEEE Transactions on Biomedical Engineering.

[68]  Kensall D. Wise,et al.  A 16-channel CMOS neural stimulating array , 1992 .

[69]  J. Deschênes,et al.  The immunology of the eye and its systemic interactions. , 1992, Critical reviews in immunology.

[70]  P.R. Troyk,et al.  Closed-loop class E transcutaneous power and data link for MicroImplants , 1992, IEEE Transactions on Biomedical Engineering.

[71]  J. L. Stone,et al.  Morphometric analysis of macular photoreceptors and ganglion cells in retinas with retinitis pigmentosa. , 1992, Archives of ophthalmology.

[72]  K. Horch,et al.  Mobility performance with a pixelized vision system , 1992, Vision Research.

[73]  W. Grill,et al.  Selective control of muscle activation with a multipolar nerve cuff electrode , 1993, IEEE Transactions on Biomedical Engineering.

[74]  Bernard Rosner,et al.  A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. , 1993 .

[75]  G. M. Clark,et al.  Electrical stimulation of the auditory nerve: The effect of electrode position on neural excitation , 1993, Hearing Research.

[76]  M. Marmor A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. , 1993, Archives of ophthalmology.

[77]  D Hickingbotham,et al.  Bipolar surface electrical stimulation of the vertebrate retina. , 1994, Archives of ophthalmology.

[78]  K. Wise,et al.  Silicon ribbon cables for chronically implantable microelectrode arrays , 1994, IEEE Transactions on Biomedical Engineering.

[79]  W. H. Dobelle,et al.  Artificial vision for the blind. The summit may be closer than you think. , 1994, ASAIO journal.

[80]  Shandurina An,et al.  Restoration of visual and auditory function using electrostimulation , 1995 .

[81]  [Restoration of visual and auditory function using electrostimulation]. , 1995, Fiziologiia cheloveka.

[82]  R. Foster,et al.  The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice ( rd rd ): implications for circadian organization , 1995, Neuroscience Letters.

[83]  E. J. Tehovnik Electrical stimulation of neural tissue to evoke behavioral responses , 1996, Journal of Neuroscience Methods.

[84]  C. Curcio,et al.  Photoreceptor loss in age-related macular degeneration. , 1996, Investigative ophthalmology & visual science.

[85]  R. H. Propst,et al.  Visual perception elicited by electrical stimulation of retina in blind humans. , 1996, Archives of ophthalmology.

[86]  Striate cortical contribution to the transcorneal electrically evoked response of the visual system. , 1996, Japanese journal of ophthalmology.

[87]  C. Kufta,et al.  Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex , 1996 .

[88]  Ulrich Egert,et al.  Novel thin film titanium nitride micro-electrodes with excellent charge transfer capability for cell stimulation and sensing applications , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[89]  W. Grill,et al.  The effect of stimulus pulse duration on selectivity of neural stimulation , 1996, IEEE Transactions on Biomedical Engineering.

[90]  Craig T. Nordhausen,et al.  Single unit recording capabilities of a 100 microelectrode array , 1996, Brain Research.

[91]  G. Clark ELECTRICAL STIMULATION OF THE AUDITORY NERVE: THE CODING OF FREQUENCY, THE PERCEPTION OF PITCH AND THE DEVELOPMENT OF COCHLEAR IMPLANT SPEECH PROCESSING STRATEGIES FOR PROFOUNDLY DEAF PEOPLE , 1996, Clinical and experimental pharmacology & physiology.

[92]  Joseph F. Rizzo,et al.  Ocular implants for the blind , 1996 .

[93]  D.B. McCreery,et al.  A characterization of the effects on neuronal excitability due to prolonged microstimulation with chronically implanted microelectrodes , 1997, IEEE Transactions on Biomedical Engineering.

[94]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[95]  M. Humayun,et al.  Dual unit visual intraocular prosthesis , 1997, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136).

[96]  K. Najafi,et al.  A single-channel implantable microstimulator for functional neuromuscular stimulation , 1997, IEEE Transactions on Biomedical Engineering.

[97]  G. Loeb,et al.  Micromodular implants to provide electrical stimulation of paralyzed muscles and limbs , 1997, IEEE Transactions on Biomedical Engineering.

[98]  A. Y. Chow,et al.  Subretinal electrical stimulation of the rabbit retina , 1997, Neuroscience Letters.

[99]  A. Lang,et al.  High‐frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor , 1997, Annals of neurology.

[100]  M. Silverman,et al.  Age-related distribution of cones and ON-bipolar cells in the rd mouse retina. , 1997, Current eye research.

[101]  R A Normann,et al.  The Utah intracortical Electrode Array: a recording structure for potential brain-computer interfaces. , 1997, Electroencephalography and clinical neurophysiology.

[102]  R.A. Normann,et al.  An advanced demultiplexing system for physiological stimulation , 1997, IEEE Transactions on Biomedical Engineering.

[103]  B. Hoefflinger,et al.  The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. , 1997, Ophthalmic research.

[104]  R. Eckmiller Learning retina implants with epiretinal contacts. , 1997, Ophthalmic research.

[105]  J T Mortimer,et al.  Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes. , 1998, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[106]  J. Mortimer,et al.  Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode , 1998, Brain Research.

[107]  R D Ross,et al.  Is perception of light useful to the blind patient? , 1998, Archives of ophthalmology.

[108]  Yoshiki Uchikawa,et al.  A computational study on an electrode array in a hybrid retinal implant , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[109]  A. Y. Chow,et al.  Subretinal semiconductor microphotodiode array. , 1998, Ophthalmic surgery and lasers.

[110]  A. Y. Chow,et al.  The Subretinal Microphotodiode Array Retinal Prosthesis , 1998, Ophthalmic Research.

[111]  P. Bach-y-Rita,et al.  Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. , 1998, Journal of rehabilitation research and development.

[112]  K Heimann,et al.  Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. , 1999, Retina.

[113]  T. Velte,et al.  A computational model of electrical stimulation of the retinal ganglion cell , 1999, IEEE Transactions on Biomedical Engineering.

[114]  E. Zrenner,et al.  Long-term survival of retinal cell cultures on retinal implant materials , 1999, Vision Research.

[115]  T Yagi,et al.  [Implantation of the artificial retina]. , 1999, Nihon rinsho. Japanese journal of clinical medicine.

[116]  Markus Schubert,et al.  Optimizing photodiode arrays for the use as retinal implants , 1999 .

[117]  E. Zrenner,et al.  Can subretinal microphotodiodes successfully replace degenerated photoreceptors? , 1999, Vision Research.

[118]  J. Weiland,et al.  Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs. , 1999, Investigative ophthalmology & visual science.

[119]  D. J. Warren,et al.  A neural interface for a cortical vision prosthesis , 1999, Vision Research.

[120]  R. Sharma,et al.  Management of hereditary retinal degenerations: present status and future directions. , 1999, Survey of ophthalmology.

[121]  Gislin Dagnelie,et al.  Understanding the origin of visual percepts elicited by electrical stimulation of the human retina , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[122]  P. Riu,et al.  Heating of tissue by near-field exposure to a dipole: a model analysis , 1999, IEEE Transactions on Biomedical Engineering.

[123]  Satoru Watanabe,et al.  Retinal ganglion cell response properties in the transcorneal electrically evoked response of the visual system , 1999, Vision Research.

[124]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[125]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[126]  D. Szarowski,et al.  Cerebral Astrocyte Response to Micromachined Silicon Implants , 1999, Experimental Neurology.

[127]  James D. Weiland,et al.  Chronic neural stimulation with thin-film, iridium oxide electrodes , 2000, IEEE Trans. Biomed. Eng..

[128]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[129]  James D. Weiland,et al.  Bioadhesives for intraocular use. , 2000 .

[130]  A. Lozano,et al.  Advances in neurostimulation for movement disorders , 2000, Neurological research.

[131]  J. Rizzo,et al.  Multi-electrode stimulation and recording in the isolated retina , 2000, Journal of Neuroscience Methods.

[132]  K. Najafi,et al.  A passive humidity monitoring system for in-situ remote wireless testing of micropackages , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[133]  Thomas Schanze,et al.  Implantation of retina stimulation electrodes and recording of electrical stimulation responses in the visual cortex of the cat , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[134]  Robert B. Szlavik,et al.  The effect of anisotropy on the potential distribution in biological tissue and its impact on nerve excitation simulations , 2000, IEEE Transactions on Biomedical Engineering.

[135]  W. Liu,et al.  A neuro-stimulus chip with telemetry unit for retinal prosthetic device , 2000, IEEE Journal of Solid-State Circuits.

[136]  Liwei Lin,et al.  Fabrication and hermeticity testing of a glass-silicon package formed using localized aluminum/silicon-to-glass bonding , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[137]  E. Zrenner,et al.  Electrical multisite stimulation of the isolated chicken retina , 2000, Vision Research.

[138]  Paul Bach-y-Rita,et al.  Brain plasticity: ‘visual’ acuity of blind persons via the tongue , 2001, Brain Research.

[139]  A. Y. Chow,et al.  Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. , 2001, Experimental eye research.

[140]  E. Zrenner Will Retinal Implants Restore Vision ? , 2002 .

[141]  Srinivas R. Sadda,et al.  Electrical Stimulation of Normal and Retinal Degenerate (rd) Isolated Mouse Retina with 25 um Electrodes , 2002 .

[142]  J. Weiland,et al.  Retinal prosthesis for the blind. , 2002, Survey of ophthalmology.

[143]  M. Humayun,et al.  MORPHOMETRIC ANALYSIS OF THE MACULA IN EYES WITH DISCIFORM AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[144]  Rizwan Bashirullah,et al.  A Smart Bi-Directional Telemetry for Retinal Prosthesis , 2002 .

[145]  B. Jones,et al.  Neural remodeling in retinal degeneration , 2003, Progress in Retinal and Eye Research.

[146]  Benoît Gérard,et al.  Pattern recognition with the optic nerve visual prosthesis. , 2003, Artificial organs.

[147]  S. Kelly,et al.  Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. , 2003, Investigative ophthalmology & visual science.

[148]  Gislin Dagnelie,et al.  Visual perception in a blind subject with a chronic microelectronic retinal prosthesis , 2003, Vision Research.

[149]  Stuart F. Cogan,et al.  Experimental Results of Intracortical Electrode Stimulation in Macaque V1 , 2003 .

[150]  S. Kelly,et al.  Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. , 2003, Investigative ophthalmology & visual science.

[151]  Gislin Dagnelie,et al.  Facial recognition using simulated prosthetic pixelized vision. , 2003, Investigative ophthalmology & visual science.

[152]  P. Jong Prevalence of age-related macular degeneration in the United States. , 2004 .

[153]  Carsten Framme,et al.  The Evaluation of Subretinal Stimulation by Film–Electrode Arrays Suitable for Chronic Human Experiments in Animal Models. , 2004 .

[154]  Benita J. O’Colmain,et al.  Prevalence of age-related macular degeneration in the United States. , 2004, Archives of ophthalmology.

[155]  John L. Wyatt,et al.  Low Power Neural Stimulator for a Retinal Prosthesis , 2004 .

[156]  P. Bach-y-Rita Tactile Sensory Substitution Studies , 2004, Annals of the New York Academy of Sciences.

[157]  Wentai Liu,et al.  Retinal Prosthesis , 2018, Essentials in Ophthalmology.

[158]  F. Zeng Trends in Cochlear Implants , 2004, Trends in amplification.

[159]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[160]  A. Y. Chow,et al.  Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats , 2005, Journal of neural engineering.

[161]  Daniel Palanker,et al.  Design of a high-resolution optoelectronic retinal prosthesis , 2005, Journal of neural engineering.

[162]  Mark S Humayun,et al.  Long-term stimulation by active epiretinal implants in normal and RCD1 dogs , 2005, Journal of neural engineering.

[163]  D.C. Rodger,et al.  Microelectronic packaging for retinal prostheses , 2005, IEEE Engineering in Medicine and Biology Magazine.

[164]  J. Ye,et al.  Electrical Stimulation of Isolated Rabbit Retina , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[165]  J. Weiland,et al.  Perceptual thresholds and electrode impedance in three retinal prosthesis subjects , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[166]  A. N. Shandurina,et al.  Results of the use of therapeutic periorbital electrostimulation in neurological patients with partial atrophy of the optic nerves , 1996, Neuroscience and Behavioral Physiology.

[167]  R. Normann,et al.  A method for pneumatically inserting an array of penetrating electrodes into cortical tissue , 2006, Annals of Biomedical Engineering.

[168]  K. E. Jones,et al.  A glass/silicon composite intracortical electrode array , 2006, Annals of Biomedical Engineering.

[169]  D. McCreery,et al.  Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes , 2006, Annals of Biomedical Engineering.

[170]  J. Weiland,et al.  Implantation of an inactive epiretinal poly(dimethyl siloxane) electrode array in dogs. , 2004, Experimental eye research.

[171]  W. Ko,et al.  Design of radio-frequency powered coils for implant instruments , 1977, Medical and Biological Engineering and Computing.

[172]  G. Loeb,et al.  Visual sensations produced by intracortical microstimulation of the human occipital cortex , 1990, Medical and Biological Engineering and Computing.

[173]  Richard A. Normann,et al.  Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system , 2006, Annals of Biomedical Engineering.

[174]  W. Grill,et al.  Electrical properties of implant encapsulation tissue , 2006, Annals of Biomedical Engineering.