Real-time neural inverse optimal control for a linear induction motor

ABSTRACT A discrete-time neural inverse optimal control is designed for a three-phase linear induction motor (LIM) in order to control its position. This controller is optimal in the sense that it minimises a cost functional. A recurrent high-order neural network, trained with the extended Kalman filter, is employed to obtain a mathematical model for the LIM with uncertainties. A super twisting-based state estimator provides an estimate of the unmeasurable state variables of the system. This control scheme is applied in real time in an LIM prototype which achieves trajectory tracking for a position reference.

[1]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[2]  Alexander G. Loukianov,et al.  Real-Time Recurrent Neural State Estimation , 2011, IEEE Transactions on Neural Networks.

[3]  Haroutuon A. Hairik,et al.  Dynamic Model of Linear Induction Motor Considering the End Effects , 2009 .

[4]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[5]  Faa-Jeng Lin,et al.  Radial Basis Function Network Control WithImproved Particle Swarm Optimizationfor Induction Generator System , 2008, IEEE Transactions on Power Electronics.

[6]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[7]  M. Kamli,et al.  Mover Position Control of Linear Induction Motor Drive Using Adaptive Backstepping Controller with Integral Action , 2009 .

[8]  Edgar N. Sánchez,et al.  Real-time implementation of neural optimal control and state estimation for a linear induction motor , 2015, Neurocomputing.

[9]  S. Haykin Kalman Filtering and Neural Networks , 2001 .

[10]  Alexander G. Loukianov,et al.  Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[11]  F.J. Lin,et al.  Recurrent Fuzzy Neural Network Using Genetic Algorithm for Linear Induction Motor Servo Drive , 2006, 2006 1ST IEEE Conference on Industrial Electronics and Applications.

[12]  L. Fridman,et al.  Discrete time supper-twisting observer for 2n dimensional systems , 2011, 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control.

[13]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Alma Y. Alanis,et al.  Real-time discrete neural control applied to a Linear Induction Motor , 2015, Neurocomputing.

[15]  B. Bandyopadhyay,et al.  Super-twisting-like algorithm in discrete time nonlinear systems , 2011, The 2011 International Conference on Advanced Mechatronic Systems.

[16]  Alexander G. Loukianov,et al.  Robust Block Decomposition Sliding Mode Control Design , 2002 .

[17]  Edgar N. Sanchez,et al.  Discrete-Time Inverse Optimal Control for Nonlinear Systems , 2013 .

[18]  C. Byrnes,et al.  Design of discrete-time nonlinear control systems via smooth feedback , 1994, IEEE Trans. Autom. Control..

[19]  E. Matkevičius,et al.  The Generalized Model of the Linear Induction Motor , 2006 .

[20]  Wanchai Subsingha,et al.  Double-sided Linear Induction Motor Control Using Space Vector Pulse Width Modulation Technique , 2013 .

[21]  Manolis A. Christodoulou,et al.  Adaptive Control with Recurrent High-order Neural Networks , 2000, Advances in Industrial Control.

[22]  Fernando Ornelas,et al.  Optimal control for non-polynomial systems , 2013, J. Frankl. Inst..

[23]  Chih-Kai Chang,et al.  Robust RBFN Control for Linear InductionMotor Drive Using FPGA , 2008, IEEE Transactions on Power Electronics.

[24]  Alexander G. Loukianov,et al.  Discrete-time Neural Network Control for a Linear Induction Motor , 2008, 2008 IEEE International Symposium on Intelligent Control.

[25]  Alma Y. Alanis,et al.  Inverse optimal neural control for a class of discrete‐time nonlinear positive systems , 2012 .

[26]  Alexander G. Loukianov,et al.  Discrete-time recurrent high order neural networks for nonlinear identification , 2010, J. Frankl. Inst..

[27]  Hamid A. Toliyat,et al.  Handbook of Electric Motors , 2004 .

[28]  Alexander G. Loukianov,et al.  High-Order Sliding Mode Block Control of Single-Phase Induction Motor , 2014, IEEE Transactions on Control Systems Technology.

[29]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[30]  Leonid M. Fridman,et al.  Super twisting control algorithm for the attitude tracking of a four rotors UAV , 2012, J. Frankl. Inst..

[31]  Theodore Wildi,et al.  Electrical Machines, Drives, and Power Systems , 1990 .

[32]  Anders Hansson,et al.  Speed Tracking of a Linear Induction Motor-Enumerative Nonlinear Model Predictive Control , 2012, IEEE Transactions on Control Systems Technology.