Sufficient conditions for maximally restricted edge connected graphs

Abstract It is shown in this work that if graph G has degree sequence d 1 ≥ d 2 ≥ ⋯ ≥ d n ≥ 2 with ∑ i = 1 l ( d i + d n − i − 1 ) > l ( n + 2 ) holding for every 1 ≤ l ≤ n / 2 − 2 , then it is λ ′ -optimal. The lower bound on the degree-summation is exemplified sharp. This observation generalizes the corresponding results of Bollobas on maximal edge connectivity of graphs.

[1]  Miguel Angel Fiol,et al.  Extraconnectivity of graphs with large girth , 1994, Discret. Math..

[2]  Heping Zhang,et al.  Sufficient conditions for graphs to be λ′-optimal and super-λ′ , 2007 .

[3]  Jianping Ou,et al.  Edge cuts leaving components of order at least m , 2005, Discret. Math..

[4]  Li Shang,et al.  Sufficient conditions for graphs to be λ′‐optimal and super‐λ′ , 2007 .

[5]  Camino Balbuena,et al.  Numbers of edges in supermagic graphs , 2006 .

[6]  Douglas Bauer,et al.  Combinatorial optimization problems in the analysis and design of probabilistic networks , 1985, Networks.

[7]  Béla Bollobás,et al.  On graphs with equal edge connectivity and minimum degree , 1979, Discret. Math..

[8]  欧见平 Restricted Edge Connectivity of Regular Graphs , 2001 .

[9]  Lutz Volkmann,et al.  Restricted edge-connectivity and minimum edge-degree , 2003, Ars Comb..

[10]  S. Louis Hakimi,et al.  On Computing a Conditional Edge-Connectivity of a Graph , 1988, Inf. Process. Lett..

[11]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[12]  Angelika Hellwig,et al.  Sufficient conditions for graphs to be λ′-optimal, super-edge-connected, and maximally edge-connected , 2005 .

[13]  Fuji Zhang,et al.  Super Restricted Edge Connectivity of Regular Graphs , 2005, Graphs Comb..

[14]  Qiao Li,et al.  Reliability analysis of circulant graphs , 1998 .

[15]  Angelika Hellwig,et al.  Maximally edge-connected and vertex-connected graphs and digraphs: A survey , 2008, Discret. Math..

[16]  Ying Qian Wang,et al.  Super restricted edge-connectivity of vertex-transitive graphs , 2004, Discret. Math..