Laplacian surface editing

Surface editing operations commonly require geometric details of the surface to be preserved as much as possible. We argue that geometric detail is an intrinsic property of a surface and that, consequently, surface editing is best performed by operating over an intrinsic surface representation. We provide such a representation of a surface, based on the Laplacian of the mesh, by encoding each vertex relative to its neighborhood. The Laplacian of the mesh is enhanced to be invariant to locally linearized rigid transformations and scaling. Based on this Laplacian representation, we develop useful editing operations: interactive free-form deformation in a region of interest based on the transformation of a handle, transfer and mixing of geometric details between two surfaces, and transplanting of a partial surface mesh onto another surface. The main computation involved in all operations is the solution of a sparse linear system, which can be done at interactive rates. We demonstrate the effectiveness of our approach in several examples, showing that the editing operations change the shape while respecting the structural geometric detail.

[1]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[2]  Alla Sheffer,et al.  Matchmaker: constructing constrained texture maps , 2003, ACM Trans. Graph..

[3]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[4]  Loïc Le Feuvre Modelling and Deformation of Surfaces Defined over Finite Elements , 2003, Shape Modeling International.

[5]  Alexei Sourin,et al.  Function representation in geometric modeling: concepts, implementation and applications , 1995, The Visual Computer.

[6]  Reinhard Klein,et al.  Mesh Forging: Editing of 3D-Meshes Using Implicitly Defined Occluders , 2003, Symposium on Geometry Processing.

[7]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[8]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[9]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[10]  Shigeru Kuriyama,et al.  Discrete Parameterization for Deforming Arbitrary Meshes , 1999, Graphics Interface.

[11]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[12]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[13]  Hans-Peter Seidel,et al.  Multiresolution hierarchies on unstructured triangle meshes , 1999, Comput. Geom..

[14]  Hiromasa Suzuki,et al.  Interactive Mesh Fusion Based on Local 3D Metamorphosis , 1999, Graphics Interface.

[15]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[16]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, ACM Trans. Graph..

[17]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[18]  Bruno Lévy,et al.  Constrained texture mapping for polygonal meshes , 2001, SIGGRAPH.

[19]  H.-P. Seidel,et al.  Dynamic remeshing and applications , 2003, SM '03.

[20]  Sabine Coquillart,et al.  Extended free-form deformation: a sculpturing tool for 3D geometric modeling , 1990, SIGGRAPH.

[21]  Craig Gotsman,et al.  Spectral compression of mesh geometry , 2000, EuroCG.

[22]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[23]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[24]  David E. Breen,et al.  Level set surface editing operators , 2002, ACM Trans. Graph..

[25]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[26]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..

[27]  Bruno Lévy Dual domain extrapolation , 2003, ACM Trans. Graph..

[28]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[29]  Fumihiko Kimura,et al.  Cut and paste based modeling with boundary features , 1993, Solid Modeling and Applications.

[30]  Steve Capell,et al.  A multiresolution framework for dynamic deformations , 2002, SCA '02.

[31]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.

[32]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[33]  克寛 北嶋,et al.  ガウス関数に基づくFree-Form Deformation , 1999 .

[34]  Alyn P. Rockwood,et al.  The displacement method for implicit blending surfaces in solid models , 1989, TOGS.

[35]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[36]  Fausto Bernardini,et al.  Cut-and-paste editing of multiresolution surfaces , 2002, SIGGRAPH.

[37]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[38]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[39]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[40]  Brian Wyvill,et al.  Extending the CSG Tree. Warping, Blending and Boolean Operations in an Implicit Surface Modeling System , 1999, Comput. Graph. Forum.

[41]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[42]  Sivan Toledo,et al.  High-Pass Quantization for Mesh Encoding , 2003, Symposium on Geometry Processing.

[43]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .