Estimation of Thruster Configurations for Reconfigurable Modular Underwater Robots

We present an algorithm for estimating thruster configurations of underwater vehicles with reconfigurable thrusters. The algorithm estimates each thruster’s effect on the vehicle’s attitude and position. The estimated parameters are used to maintain the robot’s attitude and position.

[1]  Colin Flanagan,et al.  Neural network control of underwater vehicles , 2005, Eng. Appl. Artif. Intell..

[2]  T. Ura,et al.  A feedforward neural network for identification and adaptive control of autonomous underwater vehicles , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[3]  Ricardo Baeza-Yates,et al.  Computer Science 2 , 1994 .

[4]  Junku Yuh,et al.  Development of an underwater robot, ODIN-III , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[5]  Chieh-Chih Wang,et al.  Adaptive control of an autonomous underwater vehicle testbed using neural networks , 1995, 'Challenges of Our Changing Global Environment'. Conference Proceedings. OCEANS '95 MTS/IEEE.

[6]  D. Toal,et al.  Identification of underwater vehicle dynamics with neural networks , 2004, Oceans '04 MTS/IEEE Techno-Ocean '04 (IEEE Cat. No.04CH37600).

[7]  Alexander Zelinsky,et al.  Reinforcement Learning applied to the control of an Autonomous Underwater Vehicle , 1999 .

[8]  Junku Yuh,et al.  A survey and experimental study of neural network AUV control , 1996, Proceedings of Symposium on Autonomous Underwater Vehicle Technology.

[9]  Carrick Detweiler,et al.  AMOUR V: A Hovering Energy Efficient Underwater Robot Capable of Dynamic Payloads , 2010, Int. J. Robotics Res..

[10]  J. Vaganay,et al.  Ship Hull Inspection with the HAUV: US Navy and NATO Demonstrations Results , 2006, OCEANS 2006.

[11]  Paulo J. G. Lisboa,et al.  Neural network modelling and control for underwater vehicles , 1996, Artif. Intell. Eng..

[12]  Carrick Detweiler,et al.  Complete SE[superscript 3] underwater robot control with arbitrary thruster configurations , 2010 .

[13]  Peter I. Corke,et al.  A Hybrid AUV Design for Shallow Water Reef Navigation , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[14]  Wettergreen Alexander Zelinsky Reinforcement Learning applied to the control of an AutonolDOlls ·U nclerwater .Vehicle , 1998 .

[15]  Jay A. Farrell,et al.  Connectionist learning control systems: submarine depth control , 1990, 29th IEEE Conference on Decision and Control.