High-Rate Deformation of Titanium in Shock Waves at Normal and Elevated Temperatures

[1]  K. T. Ramesh,et al.  Real-time observation of twinning-detwinning in shock-compressed magnesium via time-resolved in situ synchrotron XRD experiments , 2020 .

[2]  G. Kanel,et al.  High-Rate Deformation and Fracture of 15Kh2NMFA Steel under Impact Loading at Normal and Elevated Temperatures , 2020 .

[3]  G. Kanel,et al.  Evaluation of the Yield Stress of Solids upon Unloading from a Shock-Compressed State , 2020 .

[4]  Qiang Wu,et al.  Numerical investigation of the temperature dependence of dynamic yield stress of typical BCC metals under shock loading with a dislocation-based constitutive model , 2020, Mechanics of Materials.

[5]  G. Kanel,et al.  Stepwise shock compression of aluminum at room and elevated temperatures , 2019, Journal of Applied Physics.

[6]  G. Kanel,et al.  Effect of Small Preliminary Deformation on the Evolution of Elastoplastic Waves of Shock Compression in Annealed VT1-0 Titanium , 2018, Journal of Experimental and Theoretical Physics.

[7]  T. V. Popova,et al.  Evolution of shock compression pulses in polymethylmethacrylate and aluminum , 2018, Journal of Applied Physics.

[8]  R. Austin Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature , 2017 .

[9]  E. Zaretsky,et al.  Unusual plasticity and strength of metals at ultra-short load durations , 2017 .

[10]  S. Sinha,et al.  The role of crystallographic texture on load reversal and low cycle fatigue performance of commercially pure titanium , 2017 .

[11]  G. Kanel,et al.  Change of the kinetics of shock-wave deformation and fracture of VT1-0 titanium as a result of annealing , 2016 .

[12]  G. Kanel,et al.  Rate and temperature dependences of the yield stress of commercial titanium under conditions of shock-wave loading , 2016 .

[13]  N. Thadhani,et al.  Dynamic yielding and fracture of grade 4 titanium in plate impact experiments , 2016 .

[14]  H. Fujimoto,et al.  Work-hardening and twinning behaviors in a commercially pure titanium sheet under various loading paths , 2015 .

[15]  J. Asay,et al.  Extracting strength from high pressure ramp-release experiments , 2013 .

[16]  E. Zaretsky Impact response of titanium from the ambient temperature to 1000 °C , 2008 .

[17]  G. Kanel,et al.  Shock waves in condensed-state physics , 2007 .

[18]  Yu. R. Kolobov,et al.  Effect of preliminary strain hardening on the flow stress of titanium and a titanium alloy during shock compression , 2005 .

[19]  K. Takashima,et al.  Titanium’s high-temperature elastic constants through the hcp–bcc phase transformation , 2004 .

[20]  E. Zaretsky,et al.  Thermal “softening” and “hardening” of titanium and its alloy at high strain rates of shock-wave deforming , 2003 .

[21]  D. Shvarts,et al.  Formation and Morphology of Twinning in Titanium under High Strain Rate Deformation , 2002 .

[22]  David J. Benson,et al.  Constitutive description of dynamic deformation: physically-based mechanisms , 2002 .

[23]  V. Shim,et al.  Tensile response of ductile α-titanium at moderately high strain rates , 2002 .

[24]  G. Kanel,et al.  Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point , 2001 .

[25]  K. T. Ramesh,et al.  The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling , 1998 .

[26]  J. W. Swegle,et al.  Shock viscosity and the prediction of shock wave rise times , 1985 .

[27]  J. Asay,et al.  Calculation of thermal trapping in shock deformation of aluminum , 1982 .

[28]  L. M. Barker,et al.  Laser interferometer for measuring high velocities of any reflecting surface , 1972 .

[29]  G. R. Fowles Shock Wave Compression of Hardened and Annealed 2024 Aluminum , 1961 .

[30]  R. Mcqueen,et al.  SHOCK-WAVE COMPRESSIONS OF TWENTY-SEVEN METALS. EQUATIONS OF STATE OF METALS , 1957 .