Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA
暂无分享,去创建一个
S. Skupsky | C. J. Forrest | Robert L. McCrory | F. J. Marshall | Christian Stoeckl | Valeri N. Goncharov | D. H. Froula | V. Yu. Glebov | J. P. Knauer | T. C. Sangster | Susan Regan | Igor V. Igumenshchev | J. Knauer | V. Goncharov | R. Mccrory | S. Skupsky | C. Stoeckl | S. Regan | D. Froula | F. Marshall | V. Glebov | I. Igumenshchev | E. Campbell | E. M. Campbell | C. Forrest | T. Sangster
[1] Phillip Colella,et al. Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .
[2] G. Kyrala,et al. Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facilitya) , 2013 .
[3] Robert L. McCrory,et al. Indications of strongly flux-limited electron thermal conduction in laser- target experiments , 1975 .
[4] M J Moran,et al. Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited). , 2012, The Review of scientific instruments.
[5] P. Woodward,et al. The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .
[6] D. Clark,et al. Three-dimensional hydrodynamics of the deceleration stage in inertial confinement fusion , 2015 .
[7] Edward I. Moses,et al. The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .
[8] J. Meyer-ter-Vehn,et al. Inertial confinement by spherical implosion , 2004 .
[9] P. B. Radha,et al. Triple-picket warm plastic-shell implosions on OMEGA , 2011 .
[10] S. Skupsky,et al. Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser , 1999 .
[11] M. S. Plesset,et al. On the Stability of Fluid Flows with Spherical Symmetry , 1954 .
[12] P. B. Radha,et al. Neutron yield study of direct-drive, low-adiabat cryogenic D2 implosions on OMEGA laser system , 2009 .
[13] J. Kilkenny,et al. Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility , 2014 .
[14] F. J. Marshall,et al. A framed monochromatic x-ray microscope for ICF (invited) , 1997 .
[15] G. Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[16] B. Canaud,et al. Laser Mégajoule irradiation uniformity for direct drive , 2002 .
[17] J. A. Marozas,et al. Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA , 2010 .
[18] Steven W. Haan,et al. Three-dimensional HYDRA simulations of National Ignition Facility targets , 2001 .
[19] Samuel A. Letzring,et al. Initial performance results of the OMEGA laser system , 1997 .
[20] P. B. Radha,et al. Polar-drive implosions on OMEGA and the National Ignition Facilitya) , 2013 .
[21] J. Kilkenny,et al. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observablesa) , 2015 .
[22] J. F. Myatt,et al. Modeling Crossed-Beam Energy Transfer in Implosion Experiments on OMEGA , 2009 .
[23] Epstein,et al. Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.
[24] David C. Eder,et al. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign , 2015 .
[25] Thomas J. Murphy,et al. The effect of turbulent kinetic energy on inferred ion temperature from neutron spectra , 2014 .
[26] J. D. Kilkenny,et al. Polar direct drive on the National Ignition Facility , 2004 .
[27] J. A. Marozas,et al. Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa) , 2014 .
[28] Robert A. Forties,et al. In situ characterization of high-intensity laser beams on OMEGA , 2005 .
[29] S. Skupsky,et al. Irradiation uniformity for high-compression laser-fusion experiments , 1999 .
[30] T. C. Sangster,et al. Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions. , 2013, Physical review letters.
[31] V N Goncharov,et al. High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited). , 2012, The Review of scientific instruments.
[32] P. B. Radha,et al. Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA , 2004 .
[33] R. Betti,et al. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores , 2015 .
[34] V. Goncharov,et al. Performance of Direct-Drive Cryogenic Targets on OMEGA , 2007 .
[35] Yan Xu,et al. Laser energy deposition and its dynamic uniformity for direct-drive capsules , 2015 .
[36] T. C. Sangster,et al. Effects of local defect growth in direct-drive cryogenic implosions on OMEGA , 2013 .
[37] L. Spitzer,et al. TRANSPORT PHENOMENA IN A COMPLETELY IONIZED GAS , 1953 .
[38] R. S. Craxton,et al. Time-resolved absorption in cryogenic and room-temperature direct-drive implosionsa) , 2008 .
[39] G. Kyrala,et al. Designing symmetric polar direct drive implosions on the Omega laser facility , 2014 .
[40] J. A. Marozas,et al. Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA , 2004 .
[41] John Kelly,et al. Crossed-beam energy transfer in direct-drive implosions , 2011 .
[42] C Sorce,et al. Shell trajectory measurements from direct-drive implosion experiments. , 2012, The Review of scientific instruments.
[43] P. B. Radha,et al. Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.
[44] Jonathan D. Zuegel,et al. Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA , 2013 .
[45] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[46] Anthony Skjellum,et al. A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..
[47] V. Goncharov,et al. The effects of target mounts in direct-drive implosions on OMEGA , 2007 .