Numerical methods for conservation laws

[1]  W. McCulloch Of I and It , 2015 .

[2]  Elaine S. Oran,et al.  Numerical Simulation of Reactive Flow , 1987 .

[3]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[4]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[5]  H. C. Yee,et al.  Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates , 1987 .

[6]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[7]  S. Osher,et al.  Numerical viscosity and the entropy condition , 1979 .

[8]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[9]  Alexandre J. Chorin,et al.  Random choice solution of hyperbolic systems , 1976 .

[10]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[11]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[12]  R. Geroch,et al.  The domain of dependence , 1970 .

[13]  J. Cole,et al.  Calculation of plane steady transonic flows , 1970 .

[14]  M. Pryce,et al.  Wave Propagation and Group Velocity , 1961, Nature.

[15]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[16]  Michael E. Taylor,et al.  Propagation of singularities , 1991 .

[17]  Walter Noll,et al.  Finite-Dimensional Spaces , 1987 .

[18]  J. L. Lions,et al.  3. Nonlinear Systems , 1972 .

[19]  M. Ronald Wohlers,et al.  I – Linear Systems , 1969 .

[20]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[21]  J. Burgers A mathematical model illustrating the theory of turbulence , 1948 .