Unsupervised interaction-preserving discretization of multivariate data
暂无分享,去创建一个
Klemens Böhm | Emmanuel Müller | Jilles Vreeken | Hoang Vu Nguyen | Klemens Böhm | H. Nguyen | Emmanuel Müller | Jilles Vreeken
[1] Klemens Böhm,et al. CMI: An Information-Theoretic Contrast Measure for Enhancing Subspace Cluster and Outlier Detection , 2013, SDM.
[2] James F. Allen,et al. Actions and Events in Interval Temporal Logic , 1994, J. Log. Comput..
[3] Yi Zhang,et al. Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.
[4] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[5] Stefan Rüping,et al. On subgroup discovery in numerical domains , 2009, Data Mining and Knowledge Discovery.
[6] Huaiqing Wang,et al. An ICA-Based Multivariate Discretization Algorithm , 2006, KSEM.
[7] Randy Kerber,et al. ChiMerge: Discretization of Numeric Attributes , 1992, AAAI.
[8] Philip S. Yu,et al. Outlier detection for high dimensional data , 2001, SIGMOD '01.
[9] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[10] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[11] Stephen D. Bay. Multivariate Discretization for Set Mining , 2001, Knowledge and Information Systems.
[12] Jörg Sander,et al. Finding non-redundant, statistically significant regions in high dimensional data: a novel approach to projected and subspace clustering , 2008, KDD.
[13] H. Dette,et al. Detection of Multiple Structural Breaks in Multivariate Time Series , 2013, 1309.1309.
[14] José Carlos Príncipe,et al. A Unified Framework for Quadratic Measures of Independence , 2011, IEEE Transactions on Signal Processing.
[15] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[16] Srinivasan Parthasarathy,et al. Toward unsupervised correlation preserving discretization , 2005, IEEE Transactions on Knowledge and Data Engineering.
[17] Divesh Srivastava,et al. Summarizing Relational Databases , 2009, Proc. VLDB Endow..
[18] P. Grünwald. The Minimum Description Length Principle (Adaptive Computation and Machine Learning) , 2007 .
[19] Petri Myllymäki,et al. MDL Histogram Density Estimation , 2007, AISTATS.
[20] Thomas Lützkendorf,et al. Performance analysis of commercial buildings—Results and experiences from the German demonstration program ‘Energy Optimized Building (EnOB)’ , 2012 .
[21] Michel Verleysen,et al. Nonlinear Dimensionality Reduction , 2021, Computer Vision.
[22] J. Rissanen,et al. Modeling By Shortest Data Description* , 1978, Autom..
[23] Michael Mitzenmacher,et al. Detecting Novel Associations in Large Data Sets , 2011, Science.
[24] Ira Assent,et al. DensEst: Density Estimation for Data Mining in High Dimensional Spaces , 2009, SDM.
[25] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[26] Jilles Vreeken,et al. Summarizing data succinctly with the most informative itemsets , 2012, TKDD.
[27] Bernard W. Silverman,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[28] Marc Boullé,et al. Multivariate Discretization by Recursive Supervised Bipartition of Graph , 2005, MLDM.
[29] Jiawei Han,et al. Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.
[30] J. Chiang,et al. STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS , 2012, 1207.5578.
[31] Laks V. S. Lakshmanan,et al. MDL Summarization with Holes , 2005, VLDB.
[32] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[33] Jorma Rissanen,et al. Minimum Description Length Principle , 2010, Encyclopedia of Machine Learning.
[34] Divesh Srivastava,et al. Summary graphs for relational database schemas , 2011, Proc. VLDB Endow..
[35] Stephen D. Bay,et al. Detecting change in categorical data: mining contrast sets , 1999, KDD '99.
[36] Laks V. S. Lakshmanan,et al. The Generalized MDL Approach for Summarization , 2002, VLDB.
[37] J. Rissanen. A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .
[38] Lijian Yang,et al. Kernel estimation of multivariate cumulative distribution function , 2008 .
[39] Michael Werman,et al. A Unified Approach to the Change of Resolution: Space and Gray-Level , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[40] A. Aue,et al. Break detection in the covariance structure of multivariate time series models , 2009, 0911.3796.
[41] Nikolai K. Vereshchagin,et al. Kolmogorov's structure functions and model selection , 2002, IEEE Transactions on Information Theory.
[42] Jilles Vreeken,et al. Finding Good Itemsets by Packing Data , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[43] Usama M. Fayyad,et al. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.
[44] Christian S. Jensen,et al. Lightweight graphical models for selectivity estimation without independence assumptions , 2011, Proc. VLDB Endow..
[45] J. Scargle. Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data , 1989 .
[46] Christos Faloutsos,et al. Fast and reliable anomaly detection in categorical data , 2012, CIKM.
[47] Yunmei Chen,et al. A test of independence based on a generalized correlation function , 2011, Signal Process..
[48] Hans-Peter Kriegel,et al. LOF: identifying density-based local outliers , 2000, SIGMOD '00.
[49] Jilles Vreeken,et al. Krimp: mining itemsets that compress , 2011, Data Mining and Knowledge Discovery.
[50] Dimitrios Gunopulos,et al. Approximating multi-dimensional aggregate range queries over real attributes , 2000, SIGMOD '00.
[51] James F. Allen. Maintaining knowledge about temporal intervals , 1983, CACM.
[52] Frank Puppe,et al. Difference-based Estimates for Generalization-aware Subgroup Discovery , 2013, LWA.