CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells

All-solid-state donor/acceptor planar-heterojunction (PHJ) hybrid solar cells are constructed and their excellent performance measured. The deposition of a thin C60 fullerene or fullerene-derivative (acceptor) layer in vacuum on a CH3 NH3 PbI3 perovskite (donor) layer creates a hybrid PHJ that displays the photovoltaic effect. Such heterojunctions are shown to be suitable for the development of newly structured, hybrid, efficient solar cells.

[1]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[2]  Ken-Tsung Wong,et al.  A donor-acceptor-acceptor molecule for vacuum-processed organic solar cells with a power conversion efficiency of 6.4%. , 2012, Chemical communications.

[3]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[4]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[5]  Jie Yao,et al.  Preparation and Characterization of Fulleroid and Methanofullerene Derivatives , 1995 .

[6]  Y. Kivshar,et al.  Wide-band negative permeability of nonlinear metamaterials , 2012, Scientific Reports.

[7]  Yunzhi Liu,et al.  Infiltrating Semiconducting Polymers into Self‐Assembled Mesoporous Titania Films for Photovoltaic Applications , 2003 .

[8]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[9]  Stephen R. Forrest,et al.  Small molecular weight organic thin-film photodetectors and solar cells , 2003 .

[10]  Valentin D. Mihailetchi,et al.  Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells , 2006 .

[11]  Yongfang Li,et al.  6.5% Efficiency of Polymer Solar Cells Based on poly(3‐hexylthiophene) and Indene‐C60 Bisadduct by Device Optimization , 2010, Advanced materials.

[12]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[13]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[14]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[15]  Stephen R. Forrest,et al.  Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells , 2007 .

[16]  Christoph J. Brabec,et al.  Physics of organic bulk heterojunction devices for photovoltaic applications , 2006 .

[17]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[18]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[19]  S. Jenekhe,et al.  Enhanced Open Circuit Voltage and Efficiency of Donor–Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct , 2012 .

[20]  Yongfang Li,et al.  Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells. , 2010, Journal of the American Chemical Society.

[21]  Michael Grätzel,et al.  Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance , 2009 .

[22]  U. Jeng,et al.  Improving Device Efficiency of Polymer/Fullerene Bulk Heterojunction Solar Cells Through Enhanced Crystallinity and Reduced Grain Boundaries Induced by Solvent Additives , 2011, Advanced materials.