A GC-centered view of 3D genome organization.

[1]  Qianyu Zhao,et al.  A sustainable mouse karyotype created by programmed chromosome fusion , 2022, Science.

[2]  G. Kops,et al.  Nuclear chromosome locations dictate segregation error frequencies , 2022, Nature.

[3]  Erez Lieberman Aiden,et al.  Gene architecture directs splicing outcome in separate nuclear spatial regions. , 2022, Molecular cell.

[4]  Anisha Shakya,et al.  Phase Separation of DNA: From Past to Present. , 2021, Biophysical journal.

[5]  Kyle N. Klein,et al.  Replication timing maintains the global epigenetic state in human cells , 2019, bioRxiv.

[6]  D. Higgs,et al.  The relationship between genome structure and function , 2020, Nature Reviews Genetics.

[7]  H. Golczyk,et al.  Pericentromere clustering in Tradescantia section Rhoeo involves self-associations of AT- and GC-rich heterochromatin fractions, is developmentally regulated, and increases during differentiation , 2020, Chromosoma.

[8]  Erik L. G. Wernersson,et al.  GPSeq reveals the radial organization of chromatin in the cell nucleus , 2020, Nature Biotechnology.

[9]  N. Crosetto,et al.  Radial Organization in the Mammalian Nucleus , 2020, Frontiers in Genetics.

[10]  T. Wiehe,et al.  DNA sequence-dependent chromatin architecture and nuclear hubs formation , 2019, Scientific Reports.

[11]  L. Mirny,et al.  Heterochromatin drives compartmentalization of inverted and conventional nuclei , 2019, Nature.

[12]  Giacomo Cavalli,et al.  Principles of genome folding into topologically associating domains , 2019, Science Advances.

[13]  L. Vitale,et al.  On the length, weight and GC content of the human genome , 2019, BMC research notes.

[14]  Anisha Shakya,et al.  DNA Local-Flexibility-Dependent Assembly of Phase-Separated Liquid Droplets , 2018, Biophysical journal.

[15]  X. Xie,et al.  Three-dimensional genome structures of single diploid human cells , 2018, Science.

[16]  Jian Ma,et al.  Mapping 3D genome organization relative to nuclear compartments using TSA-Seq as a cytological ruler , 2018, The Journal of cell biology.

[17]  Y. Gao,et al.  Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle , 2017, bioRxiv.

[18]  Andre J. Faure,et al.  3D structure of individual mammalian genomes studied by single cell Hi-C , 2017, Nature.

[19]  Jonas Paulsen,et al.  Chrom3D: three-dimensional genome modeling from Hi-C and nuclear lamin-genome contacts , 2017, Genome Biology.

[20]  M. Zacharias,et al.  Free energy analysis and mechanism of base pair stacking in nicked DNA , 2016, Nucleic acids research.

[21]  G. Shivashankar,et al.  Chromosome intermingling—the physical basis of chromosome organization in differentiated cells , 2016, Nucleic acids research.

[22]  Siddharth S. Dey,et al.  Genome-wide Maps of Nuclear Lamina Interactions in Single Human Cells , 2015, Cell.

[23]  R. Rohs,et al.  A widespread role of the motif environment in transcription factor binding across diverse protein families , 2015, Genome research.

[24]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[25]  Robert S. Illingworth,et al.  Chromatin decondensation is sufficient to alter nuclear organization in embryonic stem cells , 2014, Science.

[26]  F. Grosveld,et al.  Transcription in the context of the 3D nucleus. , 2014, Current opinion in genetics & development.

[27]  D. Du,et al.  Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla , 2014, PloS one.

[28]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[29]  Matthew J. Rodesch,et al.  Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis , 2011, Chromosome Research.

[30]  Alexander Vologodskii,et al.  Sequence dependence of DNA bending rigidity , 2010, Proceedings of the National Academy of Sciences.

[31]  P. Flicek,et al.  Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. , 2010, Molecular cell.

[32]  Thomas Cremer,et al.  4D chromatin dynamics in cycling cells: Theodor Boveri's hypotheses revisited. , 2010, Nucleus.

[33]  T. Cremer,et al.  Chromosome territories. , 2010, Cold Spring Harbor perspectives in biology.

[34]  D. Marenduzzo,et al.  Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes , 2010, Chromosome Research.

[35]  S. Kozubek,et al.  H3K9 acetylation and radial chromatin positioning , 2009, Journal of cellular physiology.

[36]  M. Plohl,et al.  A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin , 2009, Cytogenetic and Genome Research.

[37]  S. Dietzel,et al.  Three-dimensional positioning of genes in mouse cell nuclei , 2008, Chromosoma.

[38]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[39]  Thomas Cremer,et al.  Replication-timing-correlated spatial chromatin arrangements in cancer and in primate interphase nuclei , 2008, Journal of Cell Science.

[40]  Elizabeth Kerr,et al.  Recruitment to the Nuclear Periphery Can Alter Expression of Genes in Human Cells , 2008, PLoS genetics.

[41]  Gerhard Wanner,et al.  CENH3 interacts with the centromeric retrotransposon cereba and GC-rich satellites and locates to centromeric substructures in barley , 2007, Chromosoma.

[42]  Y. Mo Probing the nature of hydrogen bonds in DNA base pairs , 2006, Journal of molecular modeling.

[43]  A. Pombo,et al.  Intermingling of Chromosome Territories in Interphase Suggests Role in Translocations and Transcription-Dependent Associations , 2006, PLoS biology.

[44]  Anne E Carpenter,et al.  Long-Range Directional Movement of an Interphase Chromosome Site , 2006, Current Biology.

[45]  Giorgio Bernardi,et al.  Gene-rich and gene-poor chromosomal regions have different locations in the interphase nuclei of cold-blooded vertebrates , 2006, Chromosoma.

[46]  Thomas Cremer,et al.  Common themes and cell type specific variations of higher order chromatin arrangements in the mouse , 2005, BMC Cell Biology.

[47]  R. Eils,et al.  Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes , 2005, PLoS biology.

[48]  I. Kuznetsova,et al.  New types of mouse centromeric satellite DNAs , 2005, Chromosome Research.

[49]  M. Frank-Kamenetskii,et al.  Stacked-unstacked equilibrium at the nick site of DNA. , 2004, Journal of molecular biology.

[50]  Tom Misteli,et al.  Tissue-specific spatial organization of genomes , 2004, Genome Biology.

[51]  C Cremer,et al.  Radial arrangement of chromosome territories in human cell nuclei: a computer model approach based on gene density indicates a probabilistic global positioning code. , 2004, Biophysical journal.

[52]  T. Cremer,et al.  Two-color fluorescence labeling of early and mid-to-late replicating chromatin in living cells , 2004, Chromosome Research.

[53]  Thomas Cremer,et al.  Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells , 2004, Chromosome Research.

[54]  T. Cremer,et al.  Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes , 2004, Chromosome Research.

[55]  H. Bussemaker,et al.  The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. , 2003, Genome research.

[56]  Giorgio Bernardi,et al.  Localization of the gene-richest and the gene-poorest isochores in the interphase nuclei of mammals and birds. , 2002, Gene.

[57]  T. Cremer,et al.  Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Juliet A. Ellis,et al.  The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. , 2001, Human molecular genetics.

[59]  H. Yokota,et al.  Size-dependent positioning of human chromosomes in interphase nuclei. , 2000, Biophysical journal.

[60]  R. Dilão,et al.  Spatial associations of centromeres in the nuclei of hematopoietic cells: evidence for cell-type-specific organizational patterns. , 2000, Blood.

[61]  W. Bickmore,et al.  Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts , 2000, Current Biology.

[62]  Peter Teague,et al.  Differences in the Localization and Morphology of Chromosomes in the Human Nucleus , 1999, The Journal of cell biology.

[63]  A. Bednarek,et al.  Bovine 1.709 satellite. Recombination hotspots and dispersed repeated sequences. , 1984, Journal of molecular biology.