A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents

matrix to within a multiplicative factor of . To this end we develop the first strongly polynomial-time algorithm for matrix scaling –– an important nonlinear optimization problem with many applications. Our work suggests a simple new (slow) polynomial time decision algorithm for bipartite perfect matching, conceptually different from classical approaches.

[1]  Richard J. Lipton,et al.  A Monte-Carlo Algorithm for Estimating the Permanent , 1993, SIAM J. Comput..

[2]  T. Raghavan,et al.  On pairs of multidimensional matrices , 1984 .

[3]  B. Parlett,et al.  Methods for Scaling to Doubly Stochastic Form , 1982 .

[4]  Alexander I. Barvinok,et al.  Computing Mixed Discriminants, Mixed Volumes, and Permanents , 1997, Discret. Comput. Geom..

[5]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[6]  Alexander Barvinok A simple polynomial time algorithm to approximate the permanent within a simply exponential factor , 1997 .

[7]  Richard Sinkhorn A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices , 1964 .

[8]  L. Khachiyan,et al.  ON THE COMPLEXITY OF NONNEGATIVE-MATRIX SCALING , 1996 .

[9]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[10]  J. Lorenz,et al.  On the scaling of multidimensional matrices , 1989 .

[11]  S. Micali,et al.  Priority queues with variable priority and an O(EV log V) algorithm for finding a maximal weighted matching in general graphs , 1982, FOCS 1982.

[12]  A. Lent,et al.  Iterative reconstruction algorithms. , 1976, Computers in biology and medicine.

[13]  Carsten Lund,et al.  On the hardness of computing the permanent of random matrices , 1996, STOC '92.

[14]  James Hardy Wilkinson,et al.  Rounding errors in algebraic processes , 1964, IFIP Congress.

[15]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..