A gradient-based adaptive learning framework for online seizure prediction

Most of the current epileptic seizure prediction algorithms require much prior knowledge of a patient's pre-seizure electroencephalogram (EEG) patterns. They are impractical to be applied to a wide range of patients due to a high inter-individual variability of pre-seizure EEG patterns. This paper proposes an adaptive prediction framework, which is capable of accumulating knowledge of pre-seizure EEG patterns by monitoring long-term EEG recordings. The experimental results on five patients indicate that the adaptive prediction framework is effective to improve prediction accuracy over time and thus achieve a personalized seizure predication for each patient.

[1]  A. Schulze-Bonhage,et al.  How well can epileptic seizures be predicted? An evaluation of a nonlinear method. , 2003, Brain : a journal of neurology.

[2]  A. Kanemitsu,et al.  [Anatomy of the brain]. , 1987, Nihon rinsho. Japanese journal of clinical medicine.

[3]  W. Art Chaovalitwongse,et al.  Adaptive epileptic seizure prediction system , 2003, IEEE Transactions on Biomedical Engineering.

[4]  K. Lehnertz,et al.  The First International Collaborative Workshop on Seizure Prediction: summary and data description , 2005, Clinical Neurophysiology.

[5]  Pavel Senin,et al.  Dynamic Time Warping Algorithm Review , 2008 .

[6]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[7]  S. Huffel,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[8]  M Sachs [Anatomy of the brain]. , 1982, Soins; la revue de reference infirmiere.

[9]  S. Huffel,et al.  Anticipation of epileptic seizures from standard EEG recordings , 2003, The Lancet.

[10]  C. Stam,et al.  Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field , 2005, Clinical Neurophysiology.

[11]  A. Kraskov,et al.  On the predictability of epileptic seizures , 2005, Clinical Neurophysiology.

[12]  C. Elger,et al.  CAN EPILEPTIC SEIZURES BE PREDICTED? EVIDENCE FROM NONLINEAR TIME SERIES ANALYSIS OF BRAIN ELECTRICAL ACTIVITY , 1998 .

[13]  Leonidas D. Iasemidis,et al.  On the dynamics of the human brain in temporal lobe epilepsy. , 1991 .

[14]  S. Schiff,et al.  Multivariate linear discrimination of seizures , 2005, Clinical Neurophysiology.

[15]  C. Elger,et al.  Seizure prediction by non‐linear time series analysis of brain electrical activity , 1998, The European journal of neuroscience.

[16]  J. Martinerie,et al.  Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings. , 1999, Neuroreport.

[17]  E. J. Kostelich,et al.  Comparison of Algorithms for Determining Lyapunov Exponents from Experimental Data , 1986 .

[18]  R. Quiroga,et al.  Kulback-Leibler and renormalized entropies: applications to electroencephalograms of epilepsy patients. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Alexandre Andrade,et al.  Correlation Dimension Maps of EEG from Epileptic Absences , 1999, Brain Topography.

[20]  Timothy A. Pedley,et al.  Epilepsy : a comprehensive textbook , 2008 .

[21]  G. Jamal,et al.  Changes in a measure of cardiac vagal activity before and after epileptic seizures , 1999, Epilepsy Research.

[22]  Metin Akay,et al.  Measurement and Quantification of Spatiotemporal Dynamics of Human Epileptic Seizures , 2000 .

[23]  Alistair I. Mees,et al.  Dynamics of brain electrical activity , 2005, Brain Topography.

[24]  G. Vachtsevanos,et al.  Epileptic Seizures May Begin Hours in Advance of Clinical Onset A Report of Five Patients , 2001, Neuron.