Genetic Algorithms Solve Combinatorial Optimisation Problems in the Calibration of Combustion Engines

Several combinatorial optimisation problems occur during the calibration of combustion engines. In this work, it is shown that three particular process steps benefit from genetic algorithms: First, the D-optimal experimental design is improved by the use of an appropriate crossover operator. Thereby the heuristics DETMAX or k-exchange perform a local search. The second problem concerns the optimal test bed scheduling for a more efficient and thus less expensive execution of measurements. This higher dimensional variant of the Travelling Salesman Problem (TSP) is solved by a hybrid genetic algorithm using adjacency coded individuals and a 2-opt heuristic as a local search. Finally, well-defined look-up tables, that lead to smooth maps, are composed from multiple valued look-up tables. Again a genetic algorithm finds better solutions than local search heuristics.

[1]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[2]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[3]  Zbigniew Michalewicz,et al.  A Survey of Constraint Handling Techniques in Evolutionary Computation Methods , 1995 .

[4]  K. KNÖDLER,et al.  Optimizing Data Measurements at Test Beds Using Multi-Step Genetic Algorithms , 2000 .

[5]  Byung Ro Moon,et al.  A Two-Dimensional Embedding of Graphs for Genetic Algorithms , 1997, ICGA.

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  Alexander Mitterer,et al.  Modellgestützte Kennfeldoptimierung — Ein neuer Ansatz zur Steigerung der Effizienz in der Steuergeräteapplikation , 2000 .

[8]  K. KNÖDLER,et al.  Genetic Algorithms Can Improve the Construction of D-Optimal Experimental Designs , 2000 .

[9]  Gunar E. Liepins,et al.  A New Approach on the Traveling Salesman Problem by Genetic Algorithms , 1993, ICGA.

[10]  G. Croes A Method for Solving Traveling-Salesman Problems , 1958 .

[11]  Toby J. Mitchell,et al.  An algorithm for the construction of “ D -optimal” experimental designs , 2000 .

[12]  William G. Cochran,et al.  Experimental Designs, 2nd Edition , 1950 .

[13]  R. D. Cook,et al.  A Comparison of Algorithms for Constructing Exact D-Optimal Designs , 1980 .

[14]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[15]  M. E. Johnson,et al.  Some Guidelines for Constructing Exact D-Optimal Designs on Convex Design Spaces , 1983 .

[16]  J. Kiefer,et al.  Time- and Space-Saving Computer Methods, Related to Mitchell's DETMAX, for Finding D-Optimum Designs , 1980 .

[17]  F. Zuber-Goos,et al.  Einsatz von Softcomputing-Techniken zur Kennfeldoptimierung elektronischer Motorsteuergeräte (Using Softcomputing Techniques for Map Optimization of Electronic Control Units for Combustion Engines) , 2000 .

[18]  LarrañagaP.,et al.  Genetic Algorithms for the Travelling Salesman Problem , 1999 .

[19]  Byung Ro Moon,et al.  On Multi-Dimensional Encoding/Crossover , 1995, ICGA.

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Byung Ro Moon,et al.  A new genetic approach for the traveling salesman problem , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[22]  R. Fletcher Practical Methods of Optimization , 1988 .

[23]  Toby J. Mitchell,et al.  An Algorithm for the Construction of “D-Optimal” Experimental Designs , 2000, Technometrics.