Entanglement robustness against particle loss in multiqubit systems

When some of the parties of a multipartite entangled pure state are lost, the question arises whether the residual mixed state is also entangled, in which case the initial entangled pure state is said to be robust against particle loss. In this paper, we investigate this entanglement robustness for $N$-qubit pure states. We identify exhaustively all entangled states that are fragile, i.e., not robust, with respect to the loss of any single qubit of the system. We also study the entanglement robustness properties of symmetric states and put these properties in the perspective of the classification of states with respect to stochastic local operations assisted with classic communication (SLOCC classification).

[1]  J. Latorre,et al.  Absolute maximal entanglement and quantum secret sharing , 2012, 1204.2289.

[2]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[3]  M. Lewenstein,et al.  Entangled symmetric states of N qubits with all positive partial transpositions , 2012, 1206.3088.

[4]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[5]  K. Życzkowski,et al.  Multipartite entanglement in heterogeneous systems , 2016, 1602.08064.

[6]  O. Gühne,et al.  Robustness of multiparticle entanglement: specific entanglement classes and random states , 2013, 1310.7336.

[7]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[8]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[9]  Tal Mor,et al.  Geometry of entanglement in the Bloch sphere , 2016, 1608.00994.

[10]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[11]  T. Bastin,et al.  Multiqubit symmetric states with high geometric entanglement , 2010, 1003.0593.

[12]  Slovakia,et al.  Entangled webs: Tight bound for symmetric sharing of entanglement , 2000, quant-ph/0007086.

[13]  Robust and fragile entanglement of three qubits: Relation to permutation symmetry , 2001, quant-ph/0104122.

[14]  Lin Chen,et al.  Separability problem for multipartite states of rank at most 4 , 2013, 1301.2372.

[15]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[16]  Guillaume Aubrun,et al.  Entanglement Thresholds for Random Induced States , 2011, 1106.2264.

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  Zach DeVito,et al.  Opt , 2017 .

[19]  U. Sen,et al.  Local decoherence-resistant quantum states of large systems , 2015 .

[20]  Tamás Vértesi,et al.  Highly noise resistant multiqubit quantum correlations , 2015 .

[21]  Thierry Bastin,et al.  Multiqubit symmetric states with maximally mixed one-qubit reductions , 2014, 1407.1738.

[22]  Kae Nemoto,et al.  Typical entanglement in multiple-qubit systems , 2001, quant-ph/0106023.

[23]  L. Lamata,et al.  Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.

[24]  K. Mølmer,et al.  Pairwise entanglement in symmetric multi-qubit systems , 2001, quant-ph/0106145.

[25]  Anticoherence of spin states with point-group symmetries , 2015, 1509.08300.

[26]  K. Życzkowski,et al.  Entanglement and quantum combinatorial designs , 2017, Physical Review A.

[27]  W. Dür Multipartite entanglement that is robust against disposal of particles , 2001 .

[28]  Hideo Mabuchi,et al.  Characterizing the entanglement of symmetric many-particle spin-1/2 systems , 2003 .

[29]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[30]  S. Filippov,et al.  Ultimate entanglement robustness of two-qubit states against general local noises , 2017, 1708.08208.

[31]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[32]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[33]  W. Munro,et al.  Bounds on entanglement in qudit subsystems , 2002, quant-ph/0203037.