Entanglement robustness against particle loss in multiqubit systems
暂无分享,去创建一个
[1] J. Latorre,et al. Absolute maximal entanglement and quantum secret sharing , 2012, 1204.2289.
[2] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[3] M. Lewenstein,et al. Entangled symmetric states of N qubits with all positive partial transpositions , 2012, 1206.3088.
[4] G. Vidal,et al. Robustness of entanglement , 1998, quant-ph/9806094.
[5] K. Życzkowski,et al. Multipartite entanglement in heterogeneous systems , 2016, 1602.08064.
[6] O. Gühne,et al. Robustness of multiparticle entanglement: specific entanglement classes and random states , 2013, 1310.7336.
[7] H. Briegel,et al. Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.
[8] Charles H. Bennett,et al. Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.
[9] Tal Mor,et al. Geometry of entanglement in the Bloch sphere , 2016, 1608.00994.
[10] R. Jozsa,et al. A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .
[11] T. Bastin,et al. Multiqubit symmetric states with high geometric entanglement , 2010, 1003.0593.
[12] Slovakia,et al. Entangled webs: Tight bound for symmetric sharing of entanglement , 2000, quant-ph/0007086.
[13] Robust and fragile entanglement of three qubits: Relation to permutation symmetry , 2001, quant-ph/0104122.
[14] Lin Chen,et al. Separability problem for multipartite states of rank at most 4 , 2013, 1301.2372.
[15] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[16] Guillaume Aubrun,et al. Entanglement Thresholds for Random Induced States , 2011, 1106.2264.
[17] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[18] Zach DeVito,et al. Opt , 2017 .
[19] U. Sen,et al. Local decoherence-resistant quantum states of large systems , 2015 .
[20] Tamás Vértesi,et al. Highly noise resistant multiqubit quantum correlations , 2015 .
[21] Thierry Bastin,et al. Multiqubit symmetric states with maximally mixed one-qubit reductions , 2014, 1407.1738.
[22] Kae Nemoto,et al. Typical entanglement in multiple-qubit systems , 2001, quant-ph/0106023.
[23] L. Lamata,et al. Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.
[24] K. Mølmer,et al. Pairwise entanglement in symmetric multi-qubit systems , 2001, quant-ph/0106145.
[25] Anticoherence of spin states with point-group symmetries , 2015, 1509.08300.
[26] K. Życzkowski,et al. Entanglement and quantum combinatorial designs , 2017, Physical Review A.
[27] W. Dür. Multipartite entanglement that is robust against disposal of particles , 2001 .
[28] Hideo Mabuchi,et al. Characterizing the entanglement of symmetric many-particle spin-1/2 systems , 2003 .
[29] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[30] S. Filippov,et al. Ultimate entanglement robustness of two-qubit states against general local noises , 2017, 1708.08208.
[31] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[32] Ettore Majorana. Atomi orientati in campo magnetico variabile , 1932 .
[33] W. Munro,et al. Bounds on entanglement in qudit subsystems , 2002, quant-ph/0203037.