Interval linear systems as a necessary step in fuzzy linear systems

This article clarifies what it means to solve a system of fuzzy linear equations, relying on the fact that they are a direct extension of interval linear systems of equations, already studied in a specific interval mathematics literature. We highlight four distinct definitions of a systems of linear equations where coefficients are replaced by intervals, each of which based on a generalization of scalar equality to intervals. Each of the four extensions of interval linear systems has a corresponding solution set whose calculation can be carried out by a general unified method based on a relatively new concept of constraint intervals. We also consider the smallest multidimensional intervals containing the solution sets. We propose several extensions of the interval setting to systems of linear equations where coefficients are fuzzy intervals. This unified setting clarifies many of the anomalous or inconsistent published results in various fuzzy interval linear systems studies.

[1]  W. Lodwick Analysis of structure in fuzzy linear programs , 1990 .

[2]  Didier Dubois,et al.  Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets , 2012, Fuzzy Sets Syst..

[3]  E. Hansen Interval Arithmetic in Matrix Computations, Part I , 1965 .

[4]  Vladik Kreinovich,et al.  Informal Introduction: Data Processing, Interval Computations, and Computational Complexity , 1998 .

[5]  M. Fiedler,et al.  Linear Optimization Problems with Inexact Data , 2006 .

[6]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[7]  W. Prager,et al.  Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides , 1964 .

[8]  Sergey P. Shary,et al.  Solving the linear interval tolerance problem , 1995 .

[9]  D. Dubois,et al.  Systems of linear fuzzy constraints , 1980 .

[10]  Pavel V. Sevastjanov,et al.  A new method for solving interval and fuzzy equations: Linear case , 2009, Inf. Sci..

[11]  Daniel Sánchez,et al.  On a non-nested level-based representation of fuzziness , 2012, Fuzzy Sets Syst..

[12]  Siegfried Gottwald,et al.  Applications of fuzzy sets to systems analysis , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  Weldon A. Lodwick,et al.  Interval and Fuzzy Analysis: A Unified Approach , 2007 .

[14]  Didier Dubois,et al.  Random sets and fuzzy interval analysis , 1991 .

[15]  Weldon A. Lodwick,et al.  Constrained intervals and interval spaces , 2013, Soft Comput..

[16]  Trevor P. Martin,et al.  The X-mu approach: Fuzzy quantities, fuzzy arithmetic and fuzzy association rules , 2013, 2013 IEEE Symposium on Foundations of Computational Intelligence (FOCI).

[17]  E. H. Jarow Clouds , 1931, Nature.

[18]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[19]  Ludmila Kupriyanova Inner estimation of the united solution set of interval linear algebraic system , 1995, Reliab. Comput..

[20]  E. Sanchez Solution of fuzzy equations with extended operations , 1984 .

[21]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[22]  Jiri Rohn,et al.  Solvability of Systems of Linear Interval Equations , 2003, SIAM J. Matrix Anal. Appl..

[23]  A. Sala,et al.  Modal fuzzy quantities and applications to control , 2006, NAFIPS 2006 - 2006 Annual Meeting of the North American Fuzzy Information Processing Society.

[24]  Yurilev Chalco-Cano,et al.  Single level constraint interval arithmetic , 2014, Fuzzy Sets Syst..

[25]  S. P. Shary Parameter Partition Methods for Optimal Numerical Solution of Interval Linear Systems , 2008 .

[26]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[27]  Svetoslav Markov,et al.  On quasilinear spaces of convex bodies and intervals , 2004 .

[28]  Didier Dubois,et al.  Gradual elements in a fuzzy set , 2008, Soft Comput..

[29]  J. Rohn,et al.  Linear interval inequalities , 1994 .

[30]  E. Hansen On solving systems of equations using interval arithmetic , 1968 .

[31]  J. Buckley,et al.  Solving systems of linear fuzzy equations , 1991 .

[32]  Wilhelm Barth,et al.  Optimale Lösung von Intervallgleichungssystemen , 2005, Computing.

[33]  Abraham Kandel,et al.  Fuzzy linear systems , 1998, Fuzzy Sets Syst..

[34]  Rakesh Govind,et al.  Solutions of algebraic equations involving generalized fuzzy numbers , 1991, Inf. Sci..

[35]  A. Neumaier Interval methods for systems of equations , 1990 .

[36]  Etienne E. Kerre,et al.  Solving systems of linear fuzzy equations by parametric functions - An improved algorithm , 2007, Fuzzy Sets Syst..

[37]  Tofigh Allahviranloo,et al.  Maximal- and minimal symmetric solutions of fully fuzzy linear systems , 2011, J. Comput. Appl. Math..

[38]  Arnold Neumaier Clouds, Fuzzy Sets, and Probability Intervals , 2004, Reliab. Comput..

[39]  E. Kaucher Interval Analysis in the Extended Interval Space IR , 1980 .

[40]  Radko Mesiar,et al.  Fuzzy Interval Analysis , 2000 .

[41]  Weldon A. Lodwick,et al.  Constrained Interval Arithmetic , 1999 .

[42]  Didier Dubois,et al.  Decision-theoretic foundations of qualitative possibility theory , 2001, Eur. J. Oper. Res..

[43]  Hidetomo Ichihashi,et al.  Relationships between modality constrained programming problems and various fuzzy mathematical programming problems , 1992 .

[44]  G. Rajendran,et al.  Solution of Fuzzy Linear Systems by Using Fuzzy Centre , 2009 .

[45]  James J. Buckley,et al.  Solving fuzzy equations , 1992 .

[47]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[48]  Josè A. Herencia Graded sets and points: A stratified approach to fuzzy sets and points , 1996, Fuzzy Sets Syst..

[49]  Svetoslav Markov,et al.  On the Solution of Linear Algebraic Equations Involving Interval Coefficients , 1996 .

[50]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[51]  Tofigh Allahviranloo,et al.  ON THE ALGEBRAIC SOLUTION OF FUZZY LINEAR SYSTEMS BASED ON INTERVAL THEORY , 2012 .

[52]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[53]  W. Oettli On the Solution Set of a Linear System with Inaccurate Coefficients , 1965 .

[54]  Loredana Biacino,et al.  Equations with fuzzy numbers , 1989, Inf. Sci..

[55]  Didier Dubois,et al.  Gradual Numbers and Their Application to Fuzzy Interval Analysis , 2008, IEEE Transactions on Fuzzy Systems.

[56]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[57]  D. Dubois,et al.  Fuzzy-set-theoretic differences and inclusions and their use in the analysis of fuzzy equations*) , 1984 .

[58]  J. Buckley,et al.  Solving fuzzy equations: a new solution concept , 1991 .

[59]  T. Sunaga Theory of an interval algebra and its application to numerical analysis , 2009 .

[60]  W. Congxin,et al.  Embedding problem of fuzzy number space: part II , 1992 .

[61]  E. Hansen,et al.  Interval Arithmetic in Matrix Computations, Part II , 1965 .

[62]  J. Rohn,et al.  Solvability of systems of interval linear equations and inequalities , 2006 .

[63]  C. Singh Convex programming with set-inclusive constraints and its applications to generalized linear and fractional programming , 1982 .

[64]  Rostislav Horcík,et al.  Solution of a system of linear equations with fuzzy numbers , 2008, Fuzzy Sets Syst..

[65]  Silvia Muzzioli,et al.  The solution of fuzzy linear systems by non-linear programming: a financial application , 2007, Eur. J. Oper. Res..

[66]  José A. Herencia,et al.  Graded numbers and graded convergence of fuzzy numbers , 1997, Fuzzy Sets Syst..

[67]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[68]  Trevor P. Martin,et al.  The X-μ Approach: In Theory and Practice , 2014, IPMU.

[69]  Silvia Muzzioli,et al.  A note on fuzzy linear systems , 2003 .

[70]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[71]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[72]  Janusz Wasowski,et al.  Solutions of fuzzy equations based on Kaucher arithmetic and AE-solution sets , 2008, Fuzzy Sets Syst..