BiNA: A Visual Analytics Tool for Biological Network Data

Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context. We present BiNA - the Biological Network Analyzer - a flexible open-source software for analyzing and visualizing biological networks. Highly configurable visualization styles for regulatory and metabolic network data offer sophisticated drawings and intuitive navigation and exploration techniques using hierarchical graph concepts. The generic projection and analysis framework provides powerful functionalities for visual analyses of high-throughput omics data in the context of networks, in particular for the differential analysis and the analysis of time series data. A direct interface to an underlying data warehouse provides fast access to a wide range of semantically integrated biological network databases. A plugin system allows simple customization and integration of new analysis algorithms or visual representations. BiNA is available under the 3-clause BSD license at http://bina.unipax.info/.

[1]  Christina Backes,et al.  BNDB – The Biochemical Network Database , 2007, BMC Bioinformatics.

[2]  Michael Kaufmann,et al.  yFiles - Visualization and Automatic Layout of Graphs , 2001, Graph Drawing Software.

[3]  Falk Schreiber,et al.  Integration of -omics data and networks for biomedical research with VANTED , 2010, J. Integr. Bioinform..

[4]  Jason E. Stewart,et al.  Design and implementation of microarray gene expression markup language (MAGE-ML) , 2002, Genome Biology.

[5]  Jun Fan,et al.  The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience* , 2014, Molecular & Cellular Proteomics.

[6]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[7]  R. Tibshirani Estimating Transformations for Regression via Additivity and Variance Stabilization , 1988 .

[8]  Sergei Egorov,et al.  Pathway studio - the analysis and navigation of molecular networks , 2003, Bioinform..

[9]  Yan Wang,et al.  VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology , 2009, Nucleic Acids Res..

[10]  María Martín,et al.  The Universal Protein Resource (UniProt) in 2010 , 2010 .

[11]  Christina Backes,et al.  miRTrail - a comprehensive webserver for analyzing gene and miRNA patterns to enhance the understanding of regulatory mechanisms in diseases , 2012, BMC Bioinformatics.

[12]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[13]  Peter B. McGarvey,et al.  Infrastructure for the life sciences: design and implementation of the UniProt website , 2009, BMC Bioinformatics.

[14]  Masao Nagasaki,et al.  Genomic Object Net: I. A platform for modelling and simulating biopathways. , 2003, Applied bioinformatics.

[15]  Martin Eisenacher,et al.  The mzQuantML Data Standard for Mass Spectrometry–based Quantitative Studies in Proteomics , 2013, Molecular & Cellular Proteomics.

[16]  Bang Wong,et al.  Visualizing biological data—now and in the future , 2010, Nature Methods.

[17]  Martin Vingron,et al.  Variance stabilization applied to microarray data calibration and to the quantification of differential expression , 2002, ISMB.

[18]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[19]  Matthew A. Hibbs,et al.  Visualization of omics data for systems biology , 2010, Nature Methods.

[20]  Christina Backes,et al.  An integer linear programming approach for finding deregulated subgraphs in regulatory networks , 2011, Nucleic acids research.

[21]  Falk Schreiber,et al.  Dynamic exploration and editing of KEGG pathway diagrams , 2007, Bioinform..

[22]  M. Tyers,et al.  Osprey: a network visualization system , 2003, Genome Biology.

[23]  Hans-Peter Lenhof,et al.  GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments , 2008, BMC Bioinformatics.

[24]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[25]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[26]  Oliver Kohlbacher,et al.  Using Atom Mapping Rules for an Improved Detection of Relevant Routes in Weighted Metabolic Networks , 2008, J. Comput. Biol..

[27]  Mario Albrecht,et al.  On Open Problems in Biological Network Visualization , 2009, GD.

[28]  Baris E. Suzek,et al.  The Universal Protein Resource (UniProt) in 2010 , 2009, Nucleic Acids Res..

[29]  Christina Backes,et al.  GeneTrail—advanced gene set enrichment analysis , 2007, Nucleic Acids Res..

[30]  Christina Backes,et al.  A novel algorithm for detecting differentially regulated paths based on gene set enrichment analysis , 2009, Bioinform..

[31]  Christina Backes,et al.  NetworkTrail - a web service for identifying and visualizing deregulated subnetworks , 2013, Bioinform..

[32]  Osgi Alliance,et al.  Osgi Service Platform, Release 3 , 2003 .

[33]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[34]  Oliver Kohlbacher,et al.  Finding Relevant Biotransformation Routes in Weighted Metabolic Networks , 2007, German Conference on Bioinformatics.

[35]  N. Kikuchi,et al.  CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks , 2008, Proceedings of the IEEE.

[36]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[37]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[38]  Martin Eisenacher,et al.  The mzIdentML Data Standard for Mass Spectrometry-Based Proteomics Results , 2012, Molecular & Cellular Proteomics.

[39]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[40]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[41]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.