Mixed unit interval graphs

Abstract The class of intersection graphs of unit intervals of the real line whose ends may be open or closed is a strict superclass of the well-known class of unit interval graphs. We pose a conjecture concerning characterizations of such mixed unit interval graphs, verify parts of it in general, and prove it completely for diamond-free graphs. In particular, we characterize diamond-free mixed unit interval graphs by means of an infinite family of forbidden induced subgraphs, and we show that a diamond-free graph is mixed unit interval if and only if it has intersection representations using unit intervals such that all ends of the intervals are integral.

[1]  Alan Tucker,et al.  Structure theorems for some circular-arc graphs , 1974, Discret. Math..

[2]  Roded Sharan,et al.  A Fully Dynamic Algorithm for Recognizing and Representing Proper Interval Graphs , 1999, SIAM J. Comput..

[3]  Stephan Olariu,et al.  The Ultimate Interval Graph Recognition Algorithm? (Extended Abstract). , 1998, ACM-SIAM Symposium on Discrete Algorithms.

[4]  Peter L. Hammer,et al.  Difference graphs , 1990, Discret. Appl. Math..

[5]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[6]  Celina M. H. de Figueiredo,et al.  A Linear-Time Algorithm for Proper Interval Graph Recognition , 1995, Inf. Process. Lett..

[7]  Peter C. C. Wang On incidence matrices , 1970 .

[8]  Derek G. Corneil,et al.  A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs , 2004, Discret. Appl. Math..

[9]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[10]  Stephan Olariu,et al.  Simple Linear Time Recognition of Unit Interval Graphs , 1995, Inf. Process. Lett..

[11]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[12]  D. Kendall Incidence matrices, interval graphs and seriation in archeology. , 1969 .

[13]  Jayme Luiz Szwarcfiter,et al.  Unit Interval Graphs of Open and Closed Intervals , 2013, J. Graph Theory.

[14]  Mihalis Yannakakis,et al.  Scheduling Interval-Ordered Tasks , 1979, SIAM J. Comput..

[15]  Douglas B. West,et al.  A short proof that 'proper = unit' , 1998, Discret. Math..

[16]  Haim Kaplan,et al.  Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques , 1996, SIAM J. Comput..

[17]  Haim Kaplan,et al.  Four Strikes Against Physical Mapping of DNA , 1995, J. Comput. Biol..

[18]  Peter C. Fishburn,et al.  Interval orders and interval graphs : a study of partially ordered sets , 1985 .

[19]  Peter Frankl,et al.  Open-interval graphs versus closed-interval graphs , 1987, Discret. Math..