Mesoporous zirconium oxide nanomaterials effectively enrich phosphopeptides for mass spectrometry-based phosphoproteomics.

This work represents the first use of mesoporous zirconium oxide nanomaterials for highly effective and selective enrichment of phosphorylated peptides.

[1]  B. Chait,et al.  Analysis of phosphorylated proteins and peptides by mass spectrometry. , 2001, Current opinion in chemical biology.

[2]  D. Lauffenburger,et al.  Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[3]  F. McLafferty,et al.  Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. , 2002, Journal of the American Chemical Society.

[4]  Forest M. White,et al.  Phosphoproteomics: unraveling the signaling web. , 2008, Molecular cell.

[5]  D. Zhao,et al.  Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. , 2002, Chemical communications.

[6]  Bruce Dunn,et al.  Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating , 1997, Nature.

[7]  B. McGrail,et al.  Hydroxo and Chloro Complexes/Ion Interactions of Hf4+ and the Solubility Product of HfO2(am) , 2001 .

[8]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[9]  Hanno Steen,et al.  Phosphorylation Analysis by Mass Spectrometry , 2006, Molecular & Cellular Proteomics.

[10]  J. Porath,et al.  Metal chelate affinity chromatography, a new approach to protein fractionation , 1975, Nature.

[11]  Yu-Chie Chen,et al.  Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. , 2005, Analytical chemistry.

[12]  S. Carr,et al.  Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. , 1996, Analytical biochemistry.

[13]  J. Shabanowitz,et al.  Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae , 2002, Nature Biotechnology.

[14]  Yunfeng Lu,et al.  Evaporation-Induced Self-Assembly: Nanostructures Made Easy** , 1999 .

[15]  A. Heck,et al.  Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. , 2004, Analytical chemistry.

[16]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[17]  G. Stucky,et al.  Nanoparticle Assembly of Ordered Multicomponent Mesostructured Metal Oxides via a Versatile Sol−Gel Process , 2006 .

[18]  F. McLafferty,et al.  Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process , 1998 .

[19]  P. Carr,et al.  Chemistry of zirconia and its use in chromatography. , 1993, Journal of chromatography. A.

[20]  B. Chait,et al.  Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome , 2001, Nature Biotechnology.

[21]  Ruedi Aebersold,et al.  Reproducible isolation of distinct, overlapping segments of the phosphoproteome , 2007, Nature Methods.

[22]  Bradley F. Chmelka,et al.  Block Copolymer Templating Syntheses of Mesoporous Metal Oxides with Large Ordering Lengths and Semicrystalline Framework , 1999 .

[23]  Ruedi Aebersold,et al.  Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry , 2005, Nature Methods.

[24]  D. Zhao,et al.  Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. , 2008, Journal of colloid and interface science.

[25]  M. Reth,et al.  B cell signaling and tumorigenesis. , 2005, Annual review of immunology.

[26]  Hanno Steen,et al.  Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. , 2002, Trends in biotechnology.

[27]  Native electron capture dissociation for the structural characterization of noncovalent interactions in native cytochrome C. , 2003, Angewandte Chemie.

[28]  T. Hunter,et al.  Signaling—2000 and Beyond , 2000, Cell.

[29]  S. Carr,et al.  Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry. , 2001, Analytical chemistry.

[30]  F W McLafferty,et al.  Biomolecule Mass Spectrometry , 1999, Science.

[31]  Jignesh R. Parikh,et al.  Niobium(V) oxide (Nb2O5): application to phosphoproteomics. , 2008, Analytical chemistry.

[32]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[33]  P. Roepstorff,et al.  Highly Efficient Phosphopeptide Enrichment by Calcium Phosphate Precipitation Combined with Subsequent IMAC Enrichment*S , 2007, Molecular & Cellular Proteomics.

[34]  Hye Kyong Kweon,et al.  Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. , 2006, Analytical chemistry.

[35]  Xiaogang Jiang,et al.  Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis , 2007, Electrophoresis.

[36]  H. Zou,et al.  Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. , 2006, Journal of proteome research.

[37]  M. Posewitz,et al.  Immobilized gallium(III) affinity chromatography of phosphopeptides. , 1999, Analytical chemistry.

[38]  Mingliang Ye,et al.  Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. , 2009, Analytical chemistry.