Probability Tails of Gaussian Extrema

We study the supremum of 'the' standard isonormal linear process L on a subset of a real Hilbert space H. Upper and lower bounds on the probability that supx[epsilon] LX>[lambda], [lambda] large, are found. We treat a number of examples. These include the distribution of the maximum of certain 'locally stationary' processes on 1, as well as those of the rectangle indexed, pinned Brownian sheet in k and the half-plane indexed pinned sheet in 2. We also consider Brownian motion indexed by convex sets in [0, 1]2.

[1]  M. Talagrand Small tails for the supremum of a Gaussian process , 1988 .

[2]  Michel L. Weber Analyse asymptotique des processus gaussiens stationnaires , 1979 .

[3]  X. Fernique Regularite des trajectoires des fonctions aleatoires gaussiennes , 1975 .

[4]  Richard M. Dudley,et al.  Sample Functions of the Gaussian Process , 1973 .

[5]  Victor Goodman,et al.  Distribution Estimates for Functionals of the Two-Parameter Wiener Process , 1976 .

[6]  R. Adler,et al.  Tail Behaviour for the Suprema of Gaussian Processes with Applications to Empirical Processes , 1987 .

[7]  M. J. Wichura,et al.  Estimation of first crossing time distribution for N-parameter Brownian motion processes relative to upper class boundaries , 1984 .

[8]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XII - 1982 , 1984 .

[9]  C. Qualls The Law of the Iterated Logarithm on Arbitrary Sequences for Stationary Gaussian Processes and Brownian Motion , 1977 .

[10]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[11]  C. Borell The Brunn-Minkowski inequality in Gauss space , 1975 .

[12]  L. Shepp,et al.  Sample behavior of Gaussian processes , 1972 .

[13]  William Feller,et al.  An Introduction to Probability Theory and Its Applications. I , 1951, The Mathematical Gazette.

[14]  R. Dudley The Sizes of Compact Subsets of Hilbert Space and Continuity of Gaussian Processes , 1967 .

[15]  R. Dudley Lower layers in R2 and convex sets in R3 are not GB classes , 1979 .

[16]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[17]  L. Brown,et al.  Tail Behaviour for Suprema of Empirical Processes , 1986 .

[18]  M. Talagrand Regularity of gaussian processes , 1987 .

[19]  Robert J. Adler,et al.  The Supremum of a Particular Gaussian Field , 1984 .