Sums of random Hermitian matrices and an inequality by Rudelson
暂无分享,去创建一个
[1] S. Golden. LOWER BOUNDS FOR THE HELMHOLTZ FUNCTION , 1965 .
[2] C. Thompson. Inequality with Applications in Statistical Mechanics , 1965 .
[3] János Komlós,et al. The eigenvalues of random symmetric matrices , 1981, Comb..
[4] M. Talagrand,et al. Probability in Banach spaces , 1991 .
[5] G. Pisier,et al. Non commutative Khintchine and Paley inequalities , 1991 .
[6] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[7] A. Buchholz. Operator Khintchine inequality in non-commutative probability , 2001 .
[8] Rudolf Ahlswede,et al. Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.
[9] Alexander Russell,et al. Random Cayley Graphs are Expanders: a Simple Proof of the Alon-Roichman Theorem , 2004, Electron. J. Comb..
[10] R. Vershynin. Frame expansions with erasures: an approach through the non-commutative operator theory , 2004, math/0405566.
[11] S. Mendelson,et al. On singular values of matrices with independent rows , 2006 .
[12] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[13] E. Candès,et al. Sparsity and incoherence in compressive sampling , 2006, math/0611957.
[14] R. Vershynin. Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.
[15] J. Tropp. On the conditioning of random subdictionaries , 2008 .
[16] R. Adamczak,et al. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.
[17] G. Grimmett,et al. ELECTRONIC COMMUNICATIONS in PROBABILITY , 2010 .
[18] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[19] Nikhil Srivastava,et al. Graph Sparsification by Effective Resistances , 2011, SIAM J. Comput..