Multiterminal secure source coding for a common secret source

A multiterminal secure source coding problem is proposed where multiple users discuss in public until they can recover a particular source as securely as possible. The model provides a unified framework that combines and generalizes the problems of multiterminal secret key agreement and secure computation. Bounds on the achievable discussion rate, level of secrecy and reliability are derived.

[1]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[2]  Imre Csiszár,et al.  Secrecy Capacities for Multiterminal Channel Models , 2005, IEEE Transactions on Information Theory.

[3]  Imre Csiszár,et al.  Secrecy capacities for multiple terminals , 2004, IEEE Transactions on Information Theory.

[4]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[5]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[6]  Chung Chan,et al.  Generating secret in a network , 2010 .

[7]  Ueli Maurer,et al.  Generalized privacy amplification , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[8]  Chung Chan,et al.  Linear perfect secret key agreement , 2011, 2011 IEEE Information Theory Workshop.

[9]  Chung Chan,et al.  Delay of linear perfect secret key agreement , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[10]  Masahito Hayashi,et al.  Exponential Decreasing Rate of Leaked Information in Universal Random Privacy Amplification , 2009, IEEE Transactions on Information Theory.

[11]  Chung Chan,et al.  The hidden flow of information , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[12]  Chung Chan Agreement of a restricted secret key , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[13]  Masahito Hayashi,et al.  Secure Multiplex Network Coding , 2011, 2011 International Symposium on Networking Coding.

[14]  Himanshu Tyagi,et al.  When Is a Function Securely Computable? , 2010, IEEE Transactions on Information Theory.