The Use of Convolutional Neural Networks in Biomedical Data Processing

In this work, we study the use of convolutional neural networks for biomedical signal processing. Convolutional neural networks show promising results for classifying images when compared to traditional multilayer perceptron, as the latter do not take spatial structure of the data into an account.

[1]  Patrice Abry,et al.  Sparse Support Vector Machine for Intrapartum Fetal Heart Rate Classification , 2017, IEEE Journal of Biomedical and Health Informatics.

[2]  Lenka Lhotská,et al.  Information retrieval from hospital information system: Increasing effectivity using swarm intelligence , 2015, J. Appl. Log..

[3]  Miroslav Bursa,et al.  Pelvic floor dysfunction after vaginal and cesarean delivery among singleton primiparas , 2017, International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics.

[4]  Alexandre Bernardino,et al.  A Real-Time Gabor Primal Sketch for Visual Attention , 2005, IbPRIA.

[5]  Patrice Abry,et al.  Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio , 2015, PloS one.

[6]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[7]  Lenka Lhotská,et al.  Open access intrapartum CTG database , 2014, BMC Pregnancy and Childbirth.

[8]  Lenka Lhotská,et al.  Agreement on intrapartum cardiotocogram recordings between expert obstetricians. , 2015, Journal of evaluation in clinical practice.

[9]  Lenka Lhotska,et al.  Linear and non-linear features for intrapartum cardiotocography evaluation , 2010, 2010 Computing in Cardiology.

[10]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[11]  Lenka Lhotská,et al.  Analysis of obstetricians' decision making on CTG recordings , 2014, J. Biomed. Informatics.