Numerical investigation and group method of data handling -based prediction on new flat plate solar collector integrated with nanoparticles enhanced phase change materials and tube rotation mechanism

[1]  S. D. Farahani,et al.  Enhancement of phase change material melting using nanoparticles and magnetic field in the thermal energy storage system with strip fins , 2023, Journal of Energy Storage.

[2]  Eunkyu Lee,et al.  A higher prediction accuracy-based alpha-beta filter algorithm using the feedforward artificial neural network , 2022, CAAI Trans. Intell. Technol..

[3]  D. Toghraie,et al.  Statistical modeling and investigation of thermal characteristics of a new nanofluid containing cerium oxide powder , 2022, Heliyon.

[4]  S. D. Farahani,et al.  The effect of novel fin shapes and non-uniform magnetic field on the nanoparticles embedded PCM melting in a tube , 2022, Journal of Magnetism and Magnetic Materials.

[5]  S. D. Farahani,et al.  Control of PCM melting process in an annular space via continuous or discontinuous fin and non-uniform magnetic field , 2022, Journal of Energy Storage.

[6]  Faiyaz Ahmad Deep image retrieval using artificial neural network interpolation and indexing based on similarity measurement , 2022, CAAI Trans. Intell. Technol..

[7]  Chunhui Deng,et al.  Improving sentence simplification model with ordered neurons network , 2021, CAAI Trans. Intell. Technol..

[8]  S. D. Farahani,et al.  Melting of non-Newtonian phase change material in a finned triple-tube: Efficacy of non-uniform magnetic field , 2021, Case Studies in Thermal Engineering.

[9]  S. D. Farahani,et al.  Effect of PCM and porous media/nanofluid on the thermal efficiency of microchannel heat sinks , 2021 .

[10]  M. Naresh Kumar,et al.  Investigation on indirect solar dryer for drying sliced potatoes using phase change materials (PCM) , 2021 .

[11]  D. Toghraie,et al.  Using perceptron feed-forward Artificial Neural Network (ANN) for predicting the thermal conductivity of graphene oxide-Al2O3/water-ethylene glycol hybrid nanofluid , 2021 .

[12]  S. Mellouli,et al.  Numerical study of an Evacuated Tube Solar Collector incorporating a Nano-PCM as a latent heat storage system , 2021 .

[13]  R. Velraj,et al.  Performance augmentation of solar photovoltaic panel through PCM integrated natural water circulation cooling technique , 2020, Renewable Energy.

[14]  S. D. Farahani,et al.  IMPROVING THERMAL PERFORMANCE OF SOLAR WATER HEATER USING PHASE CHANGE MATERIAL AND POROUS MATERIAL , 2021, Heat Transfer Research.

[15]  S. D. Farahani,et al.  EFFICACY OF MAGNETIC FIELD ON NANOPARTICLE-ENHANCED PHASE CHANGE MATERIAL MELTING IN A TRIPLE TUBE WITH POROUS FIN , 2021, Heat Transfer Research.

[16]  Ping Lu,et al.  A novel composite PCM for seasonal thermal energy storage of solar water heating system , 2020 .

[17]  Ali E. Anqi,et al.  Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster , 2020 .

[18]  Mauricio Carmona,et al.  Experimental comparative analysis of a flat plate solar collector with and without PCM , 2020 .

[19]  Navid Nasajpour Esfahani,et al.  Using of Artificial Neural Networks (ANNs) to predict the thermal conductivity of Zinc Oxide–Silver (50%–50%)/Water hybrid Newtonian nanofluid , 2020 .

[20]  M. Al-harahsheh,et al.  Theoretical modeling of a glass-cooled solar still incorporating PCM and coupled to flat plate solar collector , 2020 .

[21]  A. Sachdeva,et al.  Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector , 2020 .

[22]  D. Toghraie,et al.  Predict the thermal conductivity of SiO2/water–ethylene glycol (50:50) hybrid nanofluid using artificial neural network , 2020, Journal of Thermal Analysis and Calorimetry.

[23]  Yanjun Dai,et al.  Performance analysis of solar assisted heat pump coupled with build-in PCM heat storage based on PV/T panel , 2020, Solar Energy.

[24]  L. Valenzuela,et al.  Experimental and numerical study of a solar collector using phase change material as heat storage , 2020 .

[25]  Rui Guo,et al.  Experimental and numerical study of a PCM solar air heat exchanger and its ventilation preheating effectiveness , 2020, Renewable Energy.

[26]  A. Dhoble,et al.  Thermal analysis of an inclined heat sink with finned PCM container for solar applications , 2019 .

[27]  Yong‐Le Nian,et al.  Performance of solar still using shape-stabilized PCM: Experimental and theoretical investigation , 2019, Desalination.

[28]  Yanfeng Liu,et al.  Experimental Study on Performance Test of Serpentine Flat Plate Collector with Different Pipe Parameters and A New Phase Change Collector , 2019, Energy Procedia.

[29]  H. E. Qarnia,et al.  Performance evaluation of a solar thermal energy storage system using nanoparticle-enhanced phase change material , 2019, International Journal of Hydrogen Energy.

[30]  H. Hassan,et al.  Energetic and exergetic performance assessment of the inclusion of phase change materials (PCM) in a solar distillation system , 2019, Energy Conversion and Management.

[31]  Mawufemo Modjinou,et al.  Numerical simulation and experimental validation of the solar photovoltaic/thermal system with phase change material , 2018, Applied Energy.

[32]  N. Mostafa,et al.  An experimental investigation of the phase change process effects on the system performance for the evacuated tube solar collectors integrated with PCMs , 2018, Energy Conversion and Management.

[33]  T. Kousksou,et al.  PCM addition inside solar water heaters: Numerical comparative approach , 2018, Journal of Energy Storage.

[34]  Syeda Humaira Tasnim,et al.  Nano-PCM filled energy storage system for solar-thermal applications , 2018, Renewable Energy.

[35]  A. Kabeel,et al.  Comparative study on the solar still performance utilizing different PCM , 2018 .

[36]  B. Li,et al.  Experimental and numerical investigation of a solar collector/storage system with composite phase change materials , 2018 .

[37]  D. Toghraie,et al.  Investigation of finned heat sink performance with nano enhanced phase change material (NePCM) , 2018 .

[38]  M. Abokersh,et al.  On-demand operation of a compact solar water heater based on U-pipe evacuated tube solar collector combined with phase change material , 2017 .

[39]  Vladimir A. Pozdin,et al.  Evacuated tube solar collectors integrated with phase change materials , 2016 .

[40]  Mohammad Mehrali,et al.  Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material , 2015 .

[41]  Antonio Lecuona,et al.  Flat plate thermal solar collector efficiency: Transient behavior under working conditions part II: Model application and design contributions , 2011 .

[42]  A. Al-Ghandoor,et al.  Experimental investigation on the use of water-phase change material storage in conventional solar water heating systems , 2010 .

[43]  S. Riffat,et al.  Experimental investigation of energy storage for an evacuated solar collector , 2006 .

[44]  S. Canbazoğlu,et al.  Enhancement of solar thermal energy storage performance using sodium thiosulfate pentahydrate of a conventional solar water-heating system , 2005 .

[45]  Nader Nariman-zadeh,et al.  Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process , 2003 .

[46]  A. Kürklü,et al.  Thermal performance of a water-phase change material solar collector , 2002 .

[47]  A. G. Ivakhnenko,et al.  Polynomial Theory of Complex Systems , 1971, IEEE Trans. Syst. Man Cybern..