Topologically enabled optical nanomotors

Exploiting the topology of light-nanoparticle interactions could lead to novel ways for optical manipulation. Shaping the topology of light, by way of spin or orbital angular momentum engineering, is a powerful tool to manipulate matter on the nanoscale. Conventionally, such methods focus on shaping the incident beam of light and not the full interaction between the light and the object to be manipulated. We theoretically show that tailoring the topology of the phase space of the light particle interaction is a fundamentally more versatile approach, enabling dynamics that may not be achievable by shaping of the light alone. In this manner, we find that optically asymmetric (Janus) particles can become stable nanoscale motors even in a light field with zero angular momentum. These precessing steady states arise from topologically protected anticrossing behavior of the vortices of the optical torque vector field. Furthermore, by varying the wavelength of the incident light, we can control the number, orientations, and the stability of the spinning states. These results show that the combination of phase-space topology and particle asymmetry can provide a powerful degree of freedom in designing nanoparticles for optimal external manipulation in a range of nano-optomechanical applications.

[1]  John David Jackson,et al.  Classical Electrodynamics , 2020, Nature.

[2]  M. Rechtsman,et al.  Topological photonics , 2018, Reviews of Modern Physics.

[3]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[4]  Z. Levine,et al.  Continuous-feed optical sorting of aerosol particles. , 2016, Optics express.

[5]  Camille Jouvaud,et al.  Robust reconfigurable electromagnetic pathways within a photonic topological insulator. , 2016, Nature materials.

[6]  Amr A. E. Saleh,et al.  Enantioselective Optical Trapping of Chiral Nanoparticles with Plasmonic Tweezers , 2016 .

[7]  C. Fefferman,et al.  Photonic realization of topologically protected bound states in domain-wall waveguide arrays , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[8]  Marin Soljacic,et al.  Exploiting Optical Asymmetry for Controlled Guiding of Particles with Light , 2016 .

[9]  Jing Liu,et al.  An Optically Driven Bistable Janus Rotor with Patterned Metal Coatings. , 2015, ACS nano.

[10]  Halina Rubinsztein-Dunlop,et al.  Enhanced optical trapping via structured scattering , 2015, Nature Photonics.

[11]  C. Fefferman,et al.  Edge States in Honeycomb Structures , 2015, 1506.06111.

[12]  S. Skirlo,et al.  Experimental Observation of Large Chern Numbers in Photonic Crystals. , 2015, Physical review letters.

[13]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[14]  Vladlen G. Shvedov,et al.  A long-range polarization-controlled optical tractor beam , 2014, Nature Photonics.

[15]  M. Soljačić,et al.  Topological photonics , 2014, Nature Photonics.

[16]  M. Soljačić,et al.  Topological nature of optical bound states in the continuum. , 2014, Physical review letters.

[17]  M. Bandres,et al.  Photonic topological insulators , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[18]  Frank Cichos,et al.  Stochastic localization of microswimmers by photon nudging. , 2014, ACS nano.

[19]  Charles L Fefferman,et al.  Topologically protected states in one-dimensional continuous systems and Dirac points , 2014, Proceedings of the National Academy of Sciences.

[20]  C. T. Chan,et al.  Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide , 2014, Nature Communications.

[21]  Saulius Juodkazis,et al.  Topological shaping of light by closed-path nanoslits. , 2013, Physical review letters.

[22]  Mincheng Zhong,et al.  Trapping red blood cells in living animals using optical tweezers , 2013, Nature Communications.

[23]  M. Hafezi,et al.  Imaging topological edge states in silicon photonics , 2013, Nature Photonics.

[24]  Aristide Dogariu,et al.  Optically induced 'negative forces' , 2012, Nature Photonics.

[25]  Felix Dreisow,et al.  Photonic Floquet topological insulators , 2012, Nature.

[26]  L. Oddershede,et al.  Force probing of individual molecules inside the living cell is now a reality. , 2012, Nature chemical biology.

[27]  Zongfu Yu,et al.  Realizing effective magnetic field for photons by controlling the phase of dynamic modulation , 2012, Nature Photonics.

[28]  Liang Fu,et al.  Weyl points and line nodes in gyroid photonic crystals , 2012, Nature Photonics.

[29]  Gennady Shvets,et al.  Photonic topological insulators. , 2012, Nature materials.

[30]  T. Jungwirth,et al.  Experimental observation of the optical spin transfer torque , 2012, Nature Physics.

[31]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[32]  Jun Chen,et al.  Optical pulling force , 2011 .

[33]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[34]  I. Kassal,et al.  Observation of topologically protected bound states in photonic quantum walks , 2011, Nature Communications.

[35]  Xiang Zhang,et al.  Light-driven nanoscale plasmonic motors. , 2010, Nature nanotechnology.

[36]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[37]  Jörg Baumgartl,et al.  Optically mediated particle clearing using Airy wavepackets , 2008 .

[38]  U. Lei,et al.  Viscous torque on a sphere under arbitrary rotation , 2006 .

[39]  S. Raghu,et al.  Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. , 2005, Physical review letters.

[40]  F. G. D. Abajo Electromagnetic forces and torques in nanoparticles irradiated by plane waves , 2004, 0708.1006.

[41]  John Waldron,et al.  The Langevin Equation , 2004 .

[42]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 2003, Nature.

[43]  D. Grier A revolution in optical manipulation , 2003, Nature.

[44]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[45]  D. Lemons,et al.  Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)] , 1997 .

[46]  John Waldron,et al.  The Langevin Equation: With Applications in Physics, Chemistry and Electrical Engineering , 1996 .

[47]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[48]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[49]  Russell J. Donnelly,et al.  Quantized Vortices in Helium II , 1991 .

[50]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[51]  N. D. Mermin,et al.  The topological theory of defects in ordered media , 1979 .

[52]  Frank H. Stillinger,et al.  Bound states in the continuum , 1975 .

[53]  J. McConnell,et al.  The rotational Brownian motion of a sphere , 1974 .

[54]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[55]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[56]  John Henry Poynting,et al.  The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light , 1909 .

[57]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[58]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[59]  P. Mazur On the theory of brownian motion , 1959 .