GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids

Abstract GPU Optimized Monte Carlo (GOMC) is open-source software for simulating molecular systems using the Metropolis Monte Carlo algorithm. It supports simulations in a variety of ensembles, which include canonical, isothermal–isobaric, grand canonical, and Gibbs ensemble. GOMC can be used to study vapor–liquid equilibria, adsorption in porous materials, surfactant self-assembly, and condensed phase structure for complex molecules. GOMC supports a variety of all-atom, united atom, and coarse grained force fields such as OPLS, TraPPE, Mie, and Martini. The software has been written in object oriented C++, and uses OpenMP and NVIDIA CUDA to allow for execution on multi-core CPU and GPU architectures.

[1]  K Schulten,et al.  Reconstructing potential energy functions from simulated force-induced unbinding processes. , 1997, Biophysical journal.

[2]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[3]  Michael R. Shirts,et al.  Dynamical reweighting: improved estimates of dynamical properties from simulations at multiple temperatures. , 2011, The Journal of chemical physics.

[4]  Ganesh Kamath,et al.  Transferable potentials for phase equilibria. 8. United-atom description for thiols, sulfides, disulfides, and thiophene. , 2005, The journal of physical chemistry. B.

[5]  Jay W Ponder,et al.  Revised Parameters for the AMOEBA Polarizable Atomic Multipole Water Model. , 2015, The journal of physical chemistry. B.

[6]  Klaus Schulten,et al.  High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD. , 2011, The journal of physical chemistry letters.

[7]  David S. Sholl,et al.  Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials , 2009 .

[8]  J. Ilja Siepmann,et al.  Monte Carlo algorithms for simulating systems with adiabatic separation of electronic and nuclear degrees of freedom , 1999 .

[9]  Sayee Prasaad Balaji,et al.  Optimization of Particle Transfers in the Gibbs Ensemble for Systems with Strong and Directional Interactions Using CBMC, CFCMC, and CB/CFCMC , 2016 .

[10]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[11]  Wei Shi,et al.  Continuous Fractional Component Monte Carlo:  An Adaptive Biasing Method for Open System Atomistic Simulations. , 2007, Journal of chemical theory and computation.

[12]  Richard Gowers,et al.  Automated analysis and benchmarking of GCMC simulation programs in application to gas adsorption , 2018 .

[13]  Greg van Anders,et al.  Digital Alchemy for Materials Design: Colloids and Beyond. , 2015, ACS nano.

[14]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[15]  R. Snurr,et al.  RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials , 2016 .

[16]  Tony Hey,et al.  Open science decoded , 2015, Nature Physics.

[17]  Georgios C. Boulougouris,et al.  Engineering a Molecular Model for Water Phase Equilibrium over a Wide Temperature Range , 1998 .

[18]  Benoît Roux,et al.  Modeling induced polarization with classical Drude oscillators: Theory and molecular dynamics simulation algorithm , 2003 .

[19]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[20]  Callum J. Dickson,et al.  GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid , 2012 .

[21]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[22]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[23]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes , 2004 .

[24]  Randall Q Snurr,et al.  Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. , 2009, Journal of the American Chemical Society.

[25]  A. Chaffee,et al.  Ewald Summation for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[26]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. , 2005, The journal of physical chemistry. B.

[27]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[28]  J. Potoff,et al.  Mie potentials for phase equilibria calculations: application to alkanes and perfluoroalkanes. , 2009, The journal of physical chemistry. B.

[29]  Li-Chiang Lin,et al.  Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules , 2013 .

[30]  J. Potoff,et al.  Optimised Mie potentials for phase equilibria: application to alkynes , 2017 .

[31]  K. Schulten,et al.  Disulfide Bridges: Bringing Together Frustrated Structure in a Bioactive Peptide. , 2016, Biophysical journal.

[32]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[33]  Maciej Haranczyk,et al.  Metal–organic framework with optimally selective xenon adsorption and separation , 2016, Nature Communications.

[34]  L. Schwiebert,et al.  Optimized Mie Potentials for Phase Equilibria: Application to Branched Alkanes , 2017 .

[35]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[36]  G. Kamath,et al.  Mie Potentials for Phase Equilibria: Application to Alkenes , 2014 .

[37]  C. Wilmer,et al.  Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration , 2011 .

[38]  Loren Schwiebert,et al.  GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium , 2013, Comput. Phys. Commun..

[39]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[40]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[41]  Alexander D. MacKerell,et al.  Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field , 2014, The journal of physical chemistry. B.

[42]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[43]  Jeffery B. Klauda,et al.  Simulation-based methods for interpreting x-ray data from lipid bilayers. , 2006, Biophysical journal.

[44]  T. Vlugt,et al.  Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. , 2008, Journal of chemical theory and computation.

[45]  Wei Shi,et al.  Improvement in molecule exchange efficiency in Gibbs ensemble Monte Carlo: Development and implementation of the continuous fractional component move , 2008, J. Comput. Chem..

[46]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[47]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties, new version release , 2014, Comput. Phys. Commun..

[48]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[49]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[50]  Michael F. Crowley,et al.  New faster CHARMM molecular dynamics engine , 2013, J. Comput. Chem..

[51]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties , 2011, Comput. Phys. Commun..

[52]  Michael Engel,et al.  Massively parallel Monte Carlo for many-particle simulations on GPUs , 2012, J. Comput. Phys..

[53]  William L Jorgensen,et al.  Efficient drug lead discovery and optimization. , 2009, Accounts of chemical research.

[54]  Andrew S. Paluch,et al.  Cassandra: An open source Monte Carlo package for molecular simulation , 2017, J. Comput. Chem..

[55]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[56]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[57]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[58]  Hans Hasse,et al.  ms2: A molecular simulation tool for thermodynamic properties, release 3.0 , 2017, Comput. Phys. Commun..

[59]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[60]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[61]  David A. Kofke,et al.  Etomica: An object‐oriented framework for molecular simulation , 2015, J. Comput. Chem..

[62]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[63]  L. Schwiebert,et al.  Optimized Mie potentials for phase equilibria: Application to noble gases and their mixtures with n-alkanes. , 2015, The Journal of chemical physics.

[64]  J. Ilja Siepmann,et al.  Monte Carlo Calculations for Alcohols and Their Mixtures with Alkanes. Transferable Potentials for Phase Equilibria. 5. United-Atom Description of Primary, Secondary, and Tertiary Alcohols , 2001 .

[65]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[66]  Richard L. Martin,et al.  Large-scale computational screening of zeolites for ethane/ethene separation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[67]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[68]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[69]  K. Schulten,et al.  Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations , 2017, Nature Communications.

[70]  J. Ilja Siepmann,et al.  Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen , 2001 .

[71]  Sharon C. Glotzer,et al.  Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units , 2011, Comput. Phys. Commun..

[72]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[73]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[74]  S. Glotzer,et al.  Self-Assembly of Patchy Particles. , 2004, Nano letters.

[75]  Sayee Prasaad Balaji,et al.  A Comparison of Advanced Monte Carlo Methods for Open Systems: CFCMC vs CBMC. , 2014, Journal of chemical theory and computation.

[76]  M. G. Martin MCCCS Towhee: a tool for Monte Carlo molecular simulation , 2013 .

[77]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes , 2000 .

[78]  David N. LeBard,et al.  Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units , 2012 .

[79]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[80]  Alexander D. MacKerell,et al.  Identification and validation of human DNA ligase inhibitors using computer-aided drug design. , 2008, Journal of medicinal chemistry.

[81]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[82]  R. Böckmann,et al.  Optimization of the OPLS-AA Force Field for Long Hydrocarbons. , 2012, Journal of chemical theory and computation.

[83]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[84]  J. Potoff,et al.  Prediction of Radon-222 Phase Behavior by Monte Carlo Simulation , 2016 .