Cinétique de biolixiviation d'un résidu minier de pyrite en présence d'effluents organiques utilisés comme milieu de culture pour Acidithiobacillus ferrooxidans

Abstract In this study, the results of the leaching of metal sulphide concentrate using organic wastes as culture media for Acidithiobacillus ferrooxidans are summarized. These results indicate that the liquid fraction of municipal sewage sludge, paper mill sludge and pig manure, containing 10 % (w v−1) pulp density of a pyritic mine waste concentrate can support the growth of the leaching bacteria and allow metal solubilization. The inhibition by dissolved organic carbon (DOC) appeared when the concentration in pig manure liquid fraction and sewage sludge filtrate is higher than 180 mg 1−1 and 500 mg l−1, respectively. However, increase in organic concentration up to 650 mg l−1 using paper mill sludge supernatant had no inhibitory effect on the bacterial growth. An important decrease of the DOC has been measured during all bioleaching tests. The organic matter was probably consumed by heterotrophic microorganisms activity. The growth rate of the iron‐oxidizing bacteria varied from 0.05 to 0.07 h−1. The dissolution of pyrite (FeS2) in organic waste media led to a yield of Fe solubilization of about 35 %. Copper and zinc were also solubilized during the bioleaching tests. The yields of Cu and Zn solubilization ranged from 12 to 24 %.

[1]  T. Kai,et al.  Enhancement of specific growth rate of iron-oxidizing bacteria by glucose , 1996, Biotechnology Letters.

[2]  O. Tuovinen,et al.  Studies on the growth of Thiobacillus ferrooxidans , 1974, Archives of Microbiology.

[3]  G. Ferroni,et al.  Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillus ferrooxidans , 2004, Antonie van Leeuwenhoek.

[4]  O. Tuovinen,et al.  Studies on the growth of Thiobacillus ferrooxidans , 2004, Archiv für Mikrobiologie.

[5]  R. Tyagi,et al.  Class A Pathogen Reduction in the SSDML Process , 2001 .

[6]  R. Mackie,et al.  Occurrence and Diversity of Tetracycline Resistance Genes in Lagoons and Groundwater Underlying Two Swine Production Facilities , 2001, Applied and Environmental Microbiology.

[7]  R. D. Tyagi,et al.  Microflore hétérotrophe impliquée dans le procédé simultané de biolixiviation des métaux et de digestion des boues d'épuration , 2001 .

[8]  M. Boon,et al.  Chemical oxidation kinetics of pyrite in bioleaching processes , 1998 .

[9]  F. Crundwell,et al.  Growth of Thiobacillus ferrooxidans: a Novel Experimental Design for Batch Growth and Bacterial Leaching Studies , 1997, Applied and environmental microbiology.

[10]  C. Webb,et al.  Ferrous sulphate oxidation using thiobacillus ferrooxidans: a review , 1995 .

[11]  R. Tyagi,et al.  Metals removal from sewage sludge by indigenous iron‐oxidizing bacteria , 1993 .

[12]  A. Liberatori,et al.  Study of the organic matter and leaching process from municipal treatment sludge , 1993 .

[13]  R. Tyagi,et al.  Bioleaching of Metals from Sewage Sludge by Sulfur‐Oxidizing Bacteria , 1992 .

[14]  J. Pronk,et al.  Oxidation and Reduction of Iron by Acidophilic Bacteria , 1992 .

[15]  S. S. Pollack,et al.  Leaching of Pyrites of Various Reactivities by Thiobacillus ferrooxidans , 1992, Applied and environmental microbiology.

[16]  Guy Mercier,et al.  Optimum residence time (in CSTR and airlift reactor) for bacterial leaching of metals from anaerobic sewage sludge , 1991 .

[17]  A. Das,et al.  Acidiphilium symbioticum sp.nov., an acidophilic heterotrophic bacterium from Thiobacillus ferrooxidans cultures isolated from Indian mines , 1991 .

[18]  D. Couillard,et al.  Bacterial leaching of heavy metals from sewage sludge-bioreactors comparison. , 1990, Environmental pollution.

[19]  Isamu Suzuki,et al.  Synergistic Competitive Inhibition of Ferrous Iron Oxidation by Thiobacillus ferrooxidans by Increasing Concentrations of Ferric Iron and Cells , 1989, Applied and environmental microbiology.

[20]  D. Oliver,et al.  An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans , 1989, Biotechnology and bioengineering.

[21]  W. Ingledew,et al.  The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans , 1987 .

[22]  D. Holmes,et al.  Acidiphilium organovorum sp. nov., an Acidophilic Heterotroph Isolated from a Thiobacillus ferrooxidans Culture , 1986 .

[23]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[24]  A. P. Harrison Acidiphilium cryptum gen. nov., sp. nov., Heterotrophic Bacterium From Acidic Mineral Environments , 1981 .

[25]  J. H. Tuttle,et al.  Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds. , 1976, Canadian journal of microbiology.

[26]  O. Tuovinen,et al.  Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans , 1971 .

[27]  G. K. Elmund,et al.  Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste , 1971, Bulletin of environmental contamination and toxicology.

[28]  F. Lawson,et al.  Kinetics of the liquid‐phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidens , 1970 .

[29]  D. W. Duncan,et al.  Oxidation of inorganic sulfur compounds by washed cell suspensions of Thiobacillus ferrooxidans. , 1966, Canadian journal of microbiology.

[30]  H. Ehrlich,et al.  Microbial Formation and Degradation of Minerals , 1964 .

[31]  M P SILVERMAN,et al.  STUDIES ON THE CHEMOAUTOTROPHIC IRON BACTERIUM FERROBACILLUS FERROOXIDANS , 1959, Journal of bacteriology.

[32]  C. A. Ross,et al.  Mucinase activity of intestinal organisms. , 1959, The Journal of pathology and bacteriology.