Toward New 2D Zirconium-Based Metal–Organic Frameworks: Synthesis, Structures, and Electronic Properties

Nowadays, zirconium metal–organic frameworks attract more attention because of their robustness and their easier predictability in terms of topology. Herein, we have been able to control synthetic ...

[1]  Lilia S. Xie,et al.  Diverse π–π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal–organic frameworks† †Electronic supplementary information (ESI) available. CCDC 1936715–1936717. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c9sc03348c , 2019, Chemical science.

[2]  R. Luque,et al.  Functional metal–organic frameworks for catalytic applications , 2019, Coordination Chemistry Reviews.

[3]  O. Farha,et al.  Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs , 2019, Coordination Chemistry Reviews.

[4]  Riki J. Drout,et al.  Catalytic applications of enzymes encapsulated in metal–organic frameworks , 2019, Coordination Chemistry Reviews.

[5]  O. Farha,et al.  Topology and porosity control of metal–organic frameworks through linker functionalization , 2018, Chemical science.

[6]  Huan Pang,et al.  Metal-organic frameworks for direct electrochemical applications , 2018, Coordination Chemistry Reviews.

[7]  D. D. De Vos,et al.  Bulk-to-Surface Proton-Coupled Electron Transfer Reactivity of the Metal-Organic Framework MIL-125. , 2018, Journal of the American Chemical Society.

[8]  O. Farha,et al.  Revisiting the structural homogeneity of NU-1000, a Zr-based metal-organic framework , 2018 .

[9]  Pengfei Li,et al.  Recent Development and Application of Conductive MOFs , 2018 .

[10]  Lilia S. Xie,et al.  Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metal‐Organic Frameworks , 2018, Israel Journal of Chemistry.

[11]  A. Walsh,et al.  Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework , 2018, Journal of the American Chemical Society.

[12]  K. Mirica,et al.  Conductive two-dimensional metal-organic frameworks as multifunctional materials. , 2018, Chemical communications.

[13]  Y. Chabal,et al.  Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers , 2018, Nature Communications.

[14]  Alexander M. Spokoyny,et al.  Increased Electrical Conductivity in a Mesoporous Metal-Organic Framework Featuring Metallacarboranes Guests. , 2018, Journal of the American Chemical Society.

[15]  Hao Li,et al.  Recent advances in gas storage and separation using metal–organic frameworks , 2018 .

[16]  H. García,et al.  A highly stable and hierarchical tetrathiafulvalene-based metal–organic framework with improved performance as a solid catalyst , 2018, Chemical science.

[17]  Pei‐Qin Liao,et al.  Metal–organic frameworks for electrocatalysis , 2017, Coordination Chemistry Reviews.

[18]  J. Zuo,et al.  Redox-switchable breathing behavior in tetrathiafulvalene-based metal–organic frameworks , 2017, Nature Communications.

[19]  Christopher H. Hendon,et al.  Revisiting the incorporation of Ti(IV) in UiO-type metal-organic frameworks: metal exchange versus grafting and their implications on photocatalysis , 2017 .

[20]  D. D’Alessandro,et al.  Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives , 2017 .

[21]  M. Fontecave,et al.  Maximizing the Photocatalytic Activity of Metal-Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH2. , 2017, Journal of the American Chemical Society.

[22]  M. Allendorf,et al.  An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. , 2017, Chemical Society reviews.

[23]  Ayalew H. Assen,et al.  Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. , 2017, Chemical Society reviews.

[24]  M. Eddaoudi,et al.  Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration , 2017, Science.

[25]  D. D’Alessandro,et al.  Photo- and Electronically Switchable Spin-Crossover Iron(II) Metal-Organic Frameworks Based on a Tetrathiafulvalene Ligand. , 2017, Angewandte Chemie.

[26]  F. Kapteijn,et al.  Metal–organic and covalent organic frameworks as single-site catalysts , 2017, Chemical Society reviews.

[27]  Christopher H. Hendon,et al.  The Organic Secondary Building Unit: Strong Intermolecular π Interactions Define Topology in MIT-25, a Mesoporous MOF with Proton-Replete Channels. , 2017, Journal of the American Chemical Society.

[28]  J. Hupp,et al.  Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks , 2017 .

[29]  M. Dincǎ,et al.  Measuring and Reporting Electrical Conductivity in Metal-Organic Frameworks: Cd2(TTFTB) as a Case Study. , 2016, Journal of the American Chemical Society.

[30]  H. Furukawa,et al.  High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. , 2016, Journal of the American Chemical Society.

[31]  D. D’Alessandro Exploiting Redox Activity in Metal—Organic Frameworks: Concepts, Trends and Perspectives , 2016 .

[32]  D. D’Alessandro Exploiting redox activity in metal-organic frameworks: concepts, trends and perspectives. , 2016, Chemical communications.

[33]  M. Eddaoudi,et al.  A metal-organic framework–based splitter for separating propylene from propane , 2016, Science.

[34]  Hong-Cai Zhou,et al.  Zr-based metal-organic frameworks: design, synthesis, structure, and applications. , 2016, Chemical Society reviews.

[35]  Aron Walsh,et al.  Electronic origins of photocatalytic activity in d0 metal organic frameworks , 2016, Scientific Reports.

[36]  Mircea Dincă,et al.  Electrically Conductive Porous Metal-Organic Frameworks. , 2016, Angewandte Chemie.

[37]  T. Darwish,et al.  Hydrogen Storage in the Expanded Pore Metal–Organic Frameworks M2(dobpdc) (M = Mg, Mn, Fe, Co, Ni, Zn) , 2016 .

[38]  Mircea Dincă,et al.  Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks. , 2015, Journal of the American Chemical Society.

[39]  J. Hupp,et al.  Metal-organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes. , 2015, Journal of the American Chemical Society.

[40]  Dennis Sheberla,et al.  Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. , 2015, Angewandte Chemie.

[41]  Christopher H. Hendon,et al.  Cation-dependent intrinsic electrical conductivity in isostructural tetrathiafulvalene-based microporous metal-organic frameworks. , 2015, Journal of the American Chemical Society.

[42]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[43]  Jihye Park,et al.  A highly stable porphyrinic zirconium metal-organic framework with shp-a topology. , 2014, Journal of the American Chemical Society.

[44]  Aron Walsh,et al.  Electronic Chemical Potentials of Porous Metal–Organic Frameworks , 2014, Journal of the American Chemical Society.

[45]  Louis J. Farrugia,et al.  WinGX and ORTEP for Windows: an update , 2012 .

[46]  M. Dincǎ,et al.  High charge mobility in a tetrathiafulvalene-based microporous metal-organic framework. , 2012, Journal of the American Chemical Society.

[47]  Elsje Alessandra Quadrelli,et al.  Synthesis and Stability of Tagged UiO-66 Zr-MOFs , 2010 .

[48]  J. Dai,et al.  Tetrathiafulvalene-tetracarboxylate: an intriguing building block with versatility in coordination structures and redox properties. , 2010, Inorganic chemistry.

[49]  N. Avarvari,et al.  Tetrathiafulvalene-based group XV ligands : Synthesis, coordination chemistry and radical cation salts , 2009 .

[50]  Deqing Zhang,et al.  Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes. , 2009, Chemical communications.

[51]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[52]  G. Scuseria,et al.  Generalized gradient approximation for solids and their surfaces , 2007, 0707.2088.

[53]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[54]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[55]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .